Skip to main content

Disproportionation and Spin Ordering Tendencies in NaxCoO2 AT x = 1/3

  • Conference paper
  • First Online:
New Challenges in Superconductivity: Experimental Advances and Emerging Theories

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 183))

  • 811 Accesses

Abstract

The strength and effect of Coulomb correlations in the (superconducting when hydrated) x ≈ 1/3 regime of NaxCoO2 have been evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) there is a critical Uc = 3 eV, above which charge ordering occurs at x = 1/3, (2) in this charge-ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below Uc, ferromagnetism is favored; and (3) carrier conduction behavior should be very asymmetric for dopings away from x = 1/3. For x < 1/3, correlated hopping of parallel spin pairs is favored, suggesting a triplet superconducting phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  ADS  CAS  Google Scholar 

  2. K. Takada, H. Sakurai, E. Takayama-Muroachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).

    Article  ADS  CAS  Google Scholar 

  3. H. Sakurai, K. Takada, S. Yoshii, T. Sasaki, K. Kindo, and E. Takayama-Muromachi, Phys. Rev. B 68, 132507 (2003); R. Jin, B. C. Sales, P. Khalifah, D. Mandrus, Phy. Rev. Lett. 91, 217001 (2003).

    Article  ADS  Google Scholar 

  4. B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Phys. Rev. B 68, 132504 (2003); G. Cao, C. Feng, Y. Xu, W. Lu, J. Shen, M. Fang, and Z. Xu, J. Phys.: Condens. Matt. 15, L519 (2003); T. Waki, C. Michioka, M. Kato, K. Yoshimura, K. Takada, H. Sakurai, E. Takayama-Muromachi, and T. Sasalki, cond-mat/0306036; Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature 423, 425 (2003); R. E. Schaak, T. Klimczuk, M. L. Foo, and R. J. Cava, Nature 424, 527 (2003).

    Article  ADS  Google Scholar 

  5. F. C. Chou, J. H. Cho, P. A. Lee, E. T. Abel, K. Matan, and Y. S. Lee, cond-mat/0306659.

    Google Scholar 

  6. Y. Ono, R. Ishikawa, Y. Miyazaki, Y. Ishii, Y. Morlii, and T. Kajitani, J. Solid State Chem. 166, 177 (2002).

    Article  ADS  CAS  Google Scholar 

  7. J. W. Lynn, Q. Huang, C. M. Brown, V. L. Miller, M. L. Foo, R. E. Schaak, C. Y. Jones, E. A. Mackey, and R. J. Cava, Phys. Rev. B 68, 214516 (2003).

    Article  ADS  Google Scholar 

  8. J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burely, and S. Short, Phys. Rev. B 68, 214517 (2003).

    Article  ADS  Google Scholar 

  9. R. Motohashi, R. Ueda, E. Naujalis, T. Tojo, I. Terasaki, T. Atake, M. Karppinen, and H. Yamauchi, Phys. Rev. B 67, 064406 (2003).

    Article  ADS  Google Scholar 

  10. The unusual susceptibility observed by Sakurai et al., [3] with dχ/dT positive above 130 K, was interpreted to include a Curie-Weiss term that would imply a Co moment of the order of 0.01 μB.

    Google Scholar 

  11. Y. Kobayashi, M. Yokoi, M. Sato, J. Phys. Soc. Jpn. 72, 2161 (2003).

    Article  ADS  CAS  Google Scholar 

  12. R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).

    Article  ADS  CAS  Google Scholar 

  13. D. J. Singh, Phys. Rev. B 61, 13397 (2000); ibid. 68, 20503 (2003).

    Article  ADS  CAS  Google Scholar 

  14. Q.-H. Wang, D.-H. Lee, and P. A. Lee, Phys. Rev. B 69, 092504 (2004).

    Article  ADS  Google Scholar 

  15. R. Koretsune and M. Ogata, Phys. Rev. Lett. 89, 116401 (2002); M. Ogata, J. Phys. Soc. Japan 72, 1839 (2003).

    Article  ADS  Google Scholar 

  16. R. Moessner and S. L. Sondhi, Prog. Th. Phys. Suppl. 145, 37 (2002); B. Kumar and B. S. Shastry, Phys. Rev. B 68, 104508 (2003); A. Tanaka and X. Hu, Phys. Rev. Lett. 91, 257006 (2003); C. Honerkamp, Phys. Rev. B 68, 104510 (2003); G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003); cond-mat/0306569

    Article  ADS  CAS  Google Scholar 

  17. WIEN97: see P. Blaha, K. Schwarz, and J. Luitz, Vienna University of Technology, 1997, improved and updated version of the original copyrighted WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

    Article  ADS  CAS  Google Scholar 

  18. P. Novak, F. Boucher, P. Gressier, P. Blaha, and K. Schwarz, Phys. Rev. B 63, 235114 (2001); A. B. Shick, A. I. Liechtenstein, and W. E. Pickett, Phys. Rev. B 60, 10763 (1999).

    Article  ADS  Google Scholar 

  19. E. Sjesledt, L. Nordstrem, and D. J. Singh, Solid State Commun. 114, 15 (2000).

    Article  ADS  Google Scholar 

  20. K. Koepernik and H. Eschrig, Phys. Rev. B 59 1743 (1999); H. Eschrig, Optimized LCAO Method and the Electronic Structure of Extended Systems (Springer, Berlin, 1989).

    Article  ADS  CAS  Google Scholar 

  21. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993); M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

    Article  ADS  CAS  Google Scholar 

  22. I. I. Mazin, D. J. Singh, and A. Aguayo, cond-mat/0401563.

    Google Scholar 

  23. R. Moessner, S. L. Songhi, and P. Chandra, Phys. Rev. B 64, 144416 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kunes, J., Lee, KW., Pickett, W.E. (2005). Disproportionation and Spin Ordering Tendencies in NaxCoO2 AT x = 1/3. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_34

Download citation

Publish with us

Policies and ethics