Skip to main content

The Interface Phase and Dielectric Physics for Crystalline Oxides on Semiconductors

  • Chapter
Materials Fundamentals of Gate Dielectrics
  • 1311 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Froshch, L. Derick, Proc Electrochem. Soc. 547 (1957).

    Google Scholar 

  2. J. Lilienfeld, A method and apparatus for controlling electric currents, U.S. Patent No. 1,745,175 (January 28, 1930).

    Google Scholar 

  3. J. Bardeen, W.H. Brattain, Phys. Rev. 71, 230 (1947).

    Article  Google Scholar 

  4. J. St. Clair Kilby, patent filed in February 1959. Issued in 1964, Patent No. 3,138,743 for Miniaturized Electronic Circuits.

    Google Scholar 

  5. D. Kahng, M.M. Atalla, Silicon-silicon dioxide field induced surface devices, in: IRE Solid-State Device Research Conference (Carnegie Institute of Technology, Pittsburgh, PA., 1960).

    Google Scholar 

  6. D.H. Looney, Semiconducting translating device, US Patent # 2,791,758 (1957); J.A. Morton, Electrical swithching and storage, US Patent # 2,791,761 (1957); I.M. Ross, Semiconducting translating device, US Patent # 2,791,760 (1957); W.L. Brown, Semiconductive device, US Patent # 2,791,759 (1957).

    Google Scholar 

  7. R.A. McKee, F.J. Walker, M.F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998); R.A. McKee, F.J. Walker, CaTiO3 interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class, US Patent No. 5,830,270 (1998).

    Article  ADS  Google Scholar 

  8. R.A. McKee, F.J. Walker, M.F. Chisholm, Science 293, 468 (2001).

    Article  ADS  Google Scholar 

  9. R.A. McKee, F.J. Walker, M. Buongiorno Nardelli, W.A. Shelton, G.M. Stocks, Science 300, 1726 (2003).

    Article  ADS  Google Scholar 

  10. A.A. Demkov, Private communication (2004); X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, J. Kulik, Phys. Rev. B 68, 125323 (2003).

    Google Scholar 

  11. D. Taylor, Thermal expansion data VIII. Complex oxides, ABO3, the perovskites, Trans. J. Br. Ceram. Soc. 84, 181–188 (1985).

    Google Scholar 

  12. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, eds. K.-H. Hellwege, A.M. Hellwege (Springer-Verlag, Berlin, 1981), New Series, Group III, Vol. 16, Part a, p.330.

    Google Scholar 

  13. K.G. Lyon, F.L. Salinger, C.A. Swenson, G.K. White, Linear thermal expansion measurements on silicon from 6 to 340 K, J. Appl. Phys. 48, 865–868 (1977).

    Article  ADS  Google Scholar 

  14. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, ed. O. Madelung (Springer-Verlag, Berlin, 1987), New Series, Group III, Vol. 22, Part a, p. 18.

    Google Scholar 

  15. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Vol. 12, Part 1 of Thermophysical Properties of Matter (Plenum, New York, 1975), p. 116.

    Google Scholar 

  16. M.R. Melloch, D.D. Nolte, J.M. Woodall et al., Crit. Rev. Solid State 21, 189 (1996).

    Article  Google Scholar 

  17. R.A. McKee, F.J. Walker, J.R. Conner, R. Raj, Appl. Phys. Lett. 63, 2818 (1993).

    Article  ADS  Google Scholar 

  18. R.A. McKee, F.J. Walker, J.R. Conner, E.D. Specht, D.E. Zelmon, Appl. Phys. Lett. 59, 782 (1991).

    Article  ADS  Google Scholar 

  19. R.W.G. Wyckoff, Crystal Structures, Vol. 1, Chapter VII, a5 and Fig VIIA, 6a (Interscience Publishers, Inc., New York, 1951).

    Google Scholar 

  20. R.A. McKee, F.J. Walker, E.D. Specht, G.E. Jellisen, L.A. Boatner, Phys. Rev. Lett. 72, 2741 (1994).

    Article  ADS  Google Scholar 

  21. An excellent treatment of MOS dielectric theory and field effect phenomena in such a device can be found in Nicollian and Brews (see pg. 332 for discussion of D it and ΔC); E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, New York, 1982).

    Google Scholar 

  22. W. Schottky, Z. Phys. 118, 539 (1942).

    Article  MATH  ADS  Google Scholar 

  23. J. Robertson, C.W. Chen, Appl. Phys. Lett. 74, 1168 (1999).

    Article  ADS  Google Scholar 

  24. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).

    Article  Google Scholar 

  25. S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, K. Eisenbeiser, Appl. Phys. Lett. 77, 1662 (2000).

    Article  ADS  Google Scholar 

  26. J. Tershoff, Phys. Rev. Lett. 52, 465 (1984).

    Article  ADS  Google Scholar 

  27. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, 1940).

    MATH  Google Scholar 

  28. G.E. Jellison Jr., L.A. Boatner, D.H. Lowndes, R.A. McKee, M. Godbole, Appl. Optics 33, 6053 (1994).

    Article  ADS  Google Scholar 

  29. J. Bardeen, Phys. Rev. 71, 717 (1947).

    Article  ADS  Google Scholar 

  30. W. Schottky, Phys. Z. 113, 367 (1940).

    Article  ADS  Google Scholar 

  31. N.F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938).

    Article  Google Scholar 

  32. R.L. Anderson, Solid-State Electron. 5, 341 (1962).

    Article  ADS  Google Scholar 

  33. For a review of these issues, see the monograph by W. Monch, Semiconductor Surfaces and Interfaces, 3rd Edition (Springer, Berlin, 2001).

    Google Scholar 

  34. A. Franciosi, C.G. Van de Valle, Surf. Sci. Repts. 25, 1 (1996).

    Article  Google Scholar 

  35. A.A. Demkov, O.F. Sankey, Phys. Rev. Lett. 83, 2038 (1999).

    Article  ADS  Google Scholar 

  36. S.G. Louie, M.L. Cohen, Phys. Rev. B 13, 2461 (1976).

    Article  ADS  Google Scholar 

  37. W.R. Frensley, H. Kroemer, Phys. Rev. B 16, 2642 (1977).

    Article  ADS  Google Scholar 

  38. W.A. Harrison, E.A. Kraut, J.R. Waldrop, R.W. Grant, Phys. Rev. B 18, 4402 (1978).

    Article  ADS  Google Scholar 

  39. W.A. Harrison, J. Tersoff, J. Vac. Sci. Technol. B 4, 1068 (1986).

    Article  Google Scholar 

  40. W. Mönch, Appl. Phys. Lett. 72, 1899 (1998).

    Article  ADS  Google Scholar 

  41. A. Balereshi, S. Baroni, R. Resta, Phys. Rev. Lett. 61, 734 (1988).

    Article  ADS  Google Scholar 

  42. M. Peressi, S. Baroni, R. Resta, A. Balereschi, Phys. Rev. B 43, 7347 (1991); C.G. Van de Walle, R.M. Martin, Phys. Rev. B 35, 8154 (1987); C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  ADS  Google Scholar 

  43. F. Leonard, J. Tersoff, Phys. Rev. Lett. 84, 4693 (2001).

    Article  ADS  Google Scholar 

  44. R.T. Tung, Phys. Rev. Lett. 84, 6078 (2000).

    Article  ADS  Google Scholar 

  45. R.T. Tung, Phys. Rev. B 20, 205310 (2001).

    Article  ADS  Google Scholar 

  46. R.T. Tung, Mater. Sci. Eng. 35, 1 (2001).

    Article  Google Scholar 

  47. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).

    Article  Google Scholar 

  48. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995), pp. 349–394.

    Google Scholar 

  49. E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, Phys. Rev. Lett. 44, 1623 (1980).

    Article  ADS  Google Scholar 

  50. M. Buongiorno Nardelli, W.B. Shelton, G.M. Stocks, F.J. Walker, R.A. McKee, to be published. Calculations in this work have been done using the PWscf package (S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, http://www.pwscf.org/).

    Google Scholar 

  51. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  52. A.M. Stoneham, J. Dhote, A compilation of crystal data for halides and oxides, http://www.cmmp.ucl.ac.uk/?ahh/research/crystal/homepage.htm, University College London, London, and references contained therein (2002).

    Google Scholar 

  53. C.H. Ahn, T. Tybell, L. Antognazza, K. Char, R.H. Hammond, M.R. Beaseley, Ø. Fischer, J.-M. Triscone, Science 276, 1100 (1997).

    Article  Google Scholar 

  54. A. Lin, X. Hong, V. Wood, A. Verevkin, C.H. Ahn, R.A. McKee, F.J. Walker, E.D. Specht, Appl. Phys. Lett. 78, 2034 (2001).

    Article  ADS  Google Scholar 

  55. J. Levy, Phys. Rev. A 64, 052306 (2001).

    Article  ADS  Google Scholar 

  56. B.E. Kane, Fortschr. Phys. 48, 1023 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Mckee, R. (2005). The Interface Phase and Dielectric Physics for Crystalline Oxides on Semiconductors. In: Demkov, A.A., Navrotsky, A. (eds) Materials Fundamentals of Gate Dielectrics. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3078-9_8

Download citation

Publish with us

Policies and ethics