Skip to main content

Methodology for Development of High-κ Stacked Gate Dielectrics on III–V Semiconductors

  • Chapter
Materials Fundamentals of Gate Dielectrics

Abstract

A comprehensive methodology for the development of gate dielectrics on III–V semiconductors is presented. This methodology has been motivated by the tremendous difficulties encountered during the development of gate dielectrics on GaAs. The understanding that modern gate dielectrics are typically layered structures with the immediate dielectric/semiconductor interface having substantially different (and often mutually exclusive) requirements compared to the bulk of the dielectric film in terms of materials, manufacturing, and suitable characterization techniques, is at the core of the proposed methodology. While capacitor-based characterization methods such as capacitance-voltage measurements which require to maintain quasi-equilibrium in the semiconductor remain an essential component, non-equilibrium techniques such as photoluminescence intensity have become a necessary ingredient. The application of the proposed methodology has led to high-κ stacked gate oxides on GaAs displaying a broad minimum of interface state density D it ≤ 2 × 1011 cm−2 eV−1 on n-type GaAs suggesting a U-shaped D it distribution, an oxide relative dielectric constant of 20.8 ± 1, a breakdown field exceeding 4 MV/cm, and leakage currents of ≅ 2 × 10−8 A/cm2 at an electric field of 1 MV/cm (SiO2 equivalent field = 5.3 MV/cm). Potential extensions of the proposed methodology to high-κ gate dielectric development on elemental semiconductors such as Si and Ge and wide bandgap semiconductors such as GaN are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.F. Croydon, E.H.C. Parker, Dielectric Films on Gallium Arsenide (Gordon and Breach Scientific Publishers: New York, 1981).

    Google Scholar 

  2. Physics and Chemistry of III–V Compound Semiconductor Interfaces. ed. C.W. Wilmsen (Plenum Press: New York, 1985).

    Google Scholar 

  3. H. Becke, R. Hall, J. White, Gallium arsenide MOS transistors, Solid-State Electron 8, 813–823 (1965).

    Article  ADS  Google Scholar 

  4. T. Ito, Y. Sakai, The GaAs inversion-type MIS transistors, Solid-State Electron 17(7), 751–759 (1974).

    Article  ADS  Google Scholar 

  5. T. Mimura, K. Odani, N. Yokoyama, Y. Nakayama, M. Fukuta, GaAs microwave MOSFET’s, IEEE Trans. Electron Devices 25(6), 573–579 (1978).

    Article  ADS  Google Scholar 

  6. G.G. Fountain, R.A. Rudder, S.V. Hattangady, R.J. Markunas, J.A. Hutchby, Demonstration of an n-Channel Inversion Mode GaAs MISFET, in: IEDM Tech. Dig. Dec. 1989, pp. 887–889.

    Google Scholar 

  7. A. Colquhoun, E. Kohn, H.L. Hartnagel, Improved enhancement/depletion GaAsMOSFET using anodic oxide as the gate insulator, IEEE Trans. Electron Devices 25(3), 375–376 (1978).

    Article  ADS  Google Scholar 

  8. T. Mimura, K. Odani, N. Yokoyama, M. Fukuta, Newstructure of enhancement-mode GaAs microwave M.O.S.F.F.E.T., Electron. Lett. 14(16), 500–502 (1978).

    Article  ADS  Google Scholar 

  9. K. Kamimura Y. Sakai, The properties of GaAs-Al2O3 and InP-Al2O3 interfaces and the fabrication of MIS field-effect transistors, Thin Solid Films 56, 215–223 (1979).

    Article  ADS  Google Scholar 

  10. B. Bayraktaroglu, E. Kohn, H.L. Hartnagel, First anodic-oxide GaAs M.O.S.F.E.T. S based on easy technological processes, Electron. Lett. 12(2), 53–54 (1976).

    Article  Google Scholar 

  11. W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, P. Chye, Unified defect model and beyond, J. Vac. Sci. Technol. 17, 1019–1027 (1980).

    Article  ADS  Google Scholar 

  12. P. Pianetta, I. Lindau, C.M. Garner, W.E Spicer, Photoemission studies of the initial stages of oxidation of GaSb and InP, Surf. Sci. 88, 439–460 (1979).

    Article  Google Scholar 

  13. A. Callegari, P.D. Hoh, D.A. Buchanan, D. Lacey, Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment, Appl. Phys. Lett. 54(4), 332–334 (1989).

    Article  ADS  Google Scholar 

  14. M. Passlack, M. Hong, J.P. Mannaerts, Quasi-static and high frequency capacitance-voltage characterization of Ga2O3-GaAs structures fabricated by in-situ molecular-beam epitaxy, Appl. Phys. Lett. 68(8), 1099–1101 (1996).

    Article  ADS  Google Scholar 

  15. M. Passlack, M. Hong, J.P. Mannaerts, S.N.G. Chu, R.L. Opila, N. Moriya, In-situ Ga2O3 process for GaAs inversion/accumulation device and surface passivation applications, in: IEDM Tech. Dig. Dec. 1995, pp. 383–386.

    Google Scholar 

  16. M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, S.N.G. Chu, N. Moriya, F. Ren, J.R. Kwo Low D it, thermodynamically stable Ga2O3-GaAs interfaces: Fabrication, characterization, and modeling, IEEE Trans. Electron. Dev. ED-44(2), 214–225 (1997).

    Article  ADS  Google Scholar 

  17. Z. Yu, R. Droopad, C. Overgaard, M. Passlack, J.K. Abrokwah, Growth and physical properties of Ga2O3 thin films on GaAs(001) substrate by molecular beam epitaxy, Appl. Phys. Lett. 82(18), 2978–2980 (2003).

    Article  ADS  Google Scholar 

  18. M. Passlack, J.K. Abrokwah, Z. Yu, R. Droopad, C. Overgaard, H. Kawayoshi, Thermally induced oxide crystallinity and interface destruction in Ga2O3-GaAs structures, Appl. Phys. Lett. 82(11), 1691–1693 (2003).

    Article  ADS  Google Scholar 

  19. M. Passlack, Z. Yu, R. Droopad, J.K. Abrokwah, D. Braddock, S.-I. Yi, M. Hale, J. Sexton, A.C. Kummel, III–V Semiconductor Heterojunctions: Physics and Devices ed. W.Z. Cai, (Transworld Research Publisher: Kerala, India, 2003), pp. 327–355.

    Google Scholar 

  20. M. Passlack, J.K. Abrokwah, R. Droopad, Z. Yu, C. Overgaard, S.-I. Yi, M. Hale, J. Sexton, A.C. Kummel, Self-aligned GaAs p-channel heterostructure field-effect transistor, IEEE Electron Device Lett. 23(9), 508–510 (2002).

    Article  ADS  Google Scholar 

  21. J. Kwo, D.W. Murphy, M. Hong, J. P. Mannaerts, R.L. Opila, R.L. Masaitis, A.M. Sergent, Passivation of GaAs using gallium—gadolinium oxides, J. Vac. Sci. Technol. B17(3), 1294–1297 (1999).

    Google Scholar 

  22. M. Passlack, N. Medendorp, R. Gregory, S. Zollner, D. Braddock, Optical and electrical properties of amorphous GdxGa0.4−x O0.6 films in GdxGa0.4−x O0.6/Ga2O3 gate dielectric stacks on GaAs, submitted for publication.

    Google Scholar 

  23. M. Passlack, N. Medendorp, R. Gregory, D. Braddock, The role of Ga2O3 template thickness and gadolinium mole fraction in GdxGa0.4−x O0.6/Ga2O3 gate dielectric stacks on GaAs, Appl. Phys. Lett. 83(25), 5262–5264 (2003).

    Article  ADS  Google Scholar 

  24. M. Passlack, R. Droopad, Z. Yu, C. Overgaard, B. Bowers, J. Abrokwah, Nonradiative recombination at GaAs homointerfaces fabricated using an As cap deposition/removal process, Appl. Phys. Lett. 72(24), 3163–3165 (1998).

    Article  ADS  Google Scholar 

  25. M. Hale, S.I. Yi, J.Z. Sexton, A.C. Kummel, M. Passlack, Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2 × 8)/ (2 × 4), J. Chemical Physics 119(13), 6719–6728 (2003).

    Article  ADS  Google Scholar 

  26. M. Passlack, R.N. Legge, D. Convey, Z. Yu, J.K. Abrokwah, Optical measurement system for characterizing compound semiconductor interface and surface states, IEEE Trans. Instrum. Meas. 47(5), 1362–1366 (1998).

    Article  Google Scholar 

  27. T. Sawada, K. Numata, S. Tohdoh, T. Saitoh, H. Hasegawa, In-situ characterization of compound semiconductor surfaces by novel photoluminescence surface state spectroscopy, Jpn. J. Appl. Phys. 32, Part 1, 511–517 (1993).

    Article  ADS  Google Scholar 

  28. E.H. Nicollian J.R. Brews, MOS Physics and Technology (Wiley: New York, 1982).

    Google Scholar 

  29. L.M. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes, Solid-State Electron. 5(5), 285–299 (1962).

    Article  ADS  Google Scholar 

  30. D. Amey, S.J. Horowitz, High frequency characterization of advanced ceramic materials, Proc. Ann. IEPS Conf. 573–582 (1996).

    Google Scholar 

  31. See, for example, M.S. Lundstrom R.J. Schuelke, Numerical analysis of heterostructure semiconductor devices, IEEE Trans. Electron. Dev. ED-30(9), 1151–1159 (1983).

    Article  ADS  Google Scholar 

  32. M. Passlack, M. Hong, E.F. Schubert, G.J. Zydzik, J.P. Mannaerts, W.S. Hobson, T.D. Harris, Advancing metal—oxide—semiconductor theory: Steady-state nonequilibrium conditions, J. Appl. Phys. 81, 7647–7661 (1997).

    Article  ADS  Google Scholar 

  33. M. Passlack, Z. Yu, R. Droopad, B. Bowers, C. Overgaard, J. Abrokwah, A.C. Kummel, Interface charge and nonradiative carrier recombination in Ga2O3-GaAs interface structures, J. Vac. Sci. Technol. B17(1), 49–52, (Jan./Feb. 1999).

    Google Scholar 

  34. See, for example, A.S. Grove, Physics and Technology of Semiconductor Devices (John Wiley and Sons: New York, 1967).

    Google Scholar 

  35. R.K. Ahrenkiel, in Minority Carriers in III–V Semiconductors: Physics and Applications ed. R.K. Ahrenkiel and M.S. Lundstrom, Semiconductors and Semimetals, Vol. 39, (Academic: Boston, MA, 1993), pp. 119–141.

    Google Scholar 

  36. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, J. Bude, GaAs metal—oxide—semiconductor field-effect transistor with nanometer thin dielectric grown by atomic layer deposition, Appl. Phys. Lett. 83(1), 180–182 (2003).

    Article  ADS  Google Scholar 

  37. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K.K. Ng, J. Bude, GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition, IEEE Electron Device Lett. 24(4), 209–211 (2003).

    Article  ADS  Google Scholar 

  38. B. Yang, P.D. Ye, J. Kwo, M.R. Frei, H.-J.L. Gossmann, J.P. Mannaerts, M. Sergent, M. Hong, K.K. Ng, J. Bude, DC and RF characteristics of depletion-mode GaAs MOSFET employing a thin Ga2O3(Gd2O3) gate dielectric layer, Proc. IEEE GaAs IC Symp. 139 (2002).

    Google Scholar 

  39. M. Tao, D. Udeshi, N. Basit, E. Maldonado, W.P. Kirk, Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium, Appl. Phys. Lett. 82(10), 1559–1561 (2003).

    Article  ADS  Google Scholar 

  40. E. Kaxiras, Semiconductor-surface restoration by valence-mending adsorbates: Application to Si(100):S and Si(100):Se, Phys. Rev. B 43(8), 6824–6827 (1991).

    Article  ADS  Google Scholar 

  41. M. Passlack, M. Hong, J.P. Mannaerts, T.H. Chiu, C.A. Mendonca, J.C. Centanni, Capacitance-voltage and current-voltage characterization of AlxGa11−x As-GaAs structures, J. Appl. Phys. 78, 7091–7098 (1995).

    Article  ADS  Google Scholar 

  42. M. Passlack, M. Hong, J.P. Mannaerts, J.R. Kwo, L.W. Tu, Recombination velocity at oxide-GaAs interfaces fabricated by in situ molecular beam epitaxy, Appl. Phys. Lett. 68(25), 3605–3607 (1996).

    Article  ADS  Google Scholar 

  43. J.H. Stathis, E. Cartier, The role of atomic hydrogen in degradation and breakdown of SiO2 films, Extended Abstracts 1996 International Conference on Solid State Devices and Materials pp. 791–793, (1996).

    Google Scholar 

  44. M.C. Hersam, N.P. Guisinger, J. Lee, K. Cheng, J.W. Lyding, Variable temperature study of the passivation of dangling bonds at Si(100)-2 × 1 reconstructed surfaces with H and D, Appl. Phys. Lett. 80(2), 201–203 (2002).

    Article  ADS  Google Scholar 

  45. J.R. Chavez, R.A.B. Devine, W.M. Shedd, Radiation sensitivity reduction in deuterium annealed Si-SiO2 structures, Appl. Phys. Lett. 80(2), 213–215 (2002).

    Article  ADS  Google Scholar 

  46. J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, K. Fukuda, Excellent effects of hydrogen postoxidation annealing on inversion channel mobility of 4H-SiC MOSFET fabricated on (1120) face, IEEE Electron Device Lett. 23(1), 13–15 (2002).

    Article  ADS  Google Scholar 

  47. T. Ngai, X. Chen, J. Chen, S.K. Banerjee, Improving SiO2/SiGe interface of SiGe p-metal— oxide—silicon field-effect transistors using water vapor annealing, Appl. Phys. Lett. 80(10), 1773–1775 (2002).

    Article  ADS  Google Scholar 

  48. R.J. Browne, E.A. Ogryzlo, K. Eisenbeiser, Z. Yu, R. Droopad, C.D. Overgaard, Passivation of defects at the SrTiO3/Si interface with H and H2, Appl. Phys. Lett. 80(15), 2699–2700 (2002).

    Article  ADS  Google Scholar 

  49. E.S. Aydil, K.P. Giapis, R.A. Gottscho, V.M. Donnelly, E. Yoon, Ammonia plasma passivation of GaAs in downstream microwave and radio-frequency parallel plate plasma reactors, J. Vac. Sci. Technol. B11(2), 195–205 (1993).

    Google Scholar 

  50. J. Kwo, M. Hong, A.R. Kortan, D.W. Murphy, J. P. Mannaerts, A.M. Sergent, Y.C. Wang, K.C. Hsieh, The (Ga2O3)1−x (Gd2O3)x Oxides with x = 0–1.0 for GaAs Passivation, Mater. Res. Soc. Symp. 573, 57–67 (1999).

    Google Scholar 

  51. Model 595 Quasistatic CV Meter, Instruction Manual (Keithley Instruments Cleveland, OH, 1986), p. 3–3.

    Google Scholar 

  52. S.M. Sze, Physics of Semiconductor Devices (Wiley: New York, 1981), p. 385.

    Google Scholar 

  53. E. Yablonovitch, D.L. Atlara, C.C. Chang, T. Gmitter, T.B. Bright, Unusually low surfacerecombination velocity on silicon and germanium surfaces, Phys. Rev. Lett. 57(2), 249–252 (1986).

    Article  ADS  Google Scholar 

  54. M.L. Green, J.-U. Sachse, G. Higashi, L.C. Feldman, T. Boone, D. Brasen, B.E. Weir, Rapid technique for determination of Si/SiO2 and Si/Si-O-N interface state densities based on measurement of recombination lifetimes, The Physics and Chemistry of SiO 2 and the Si-SiO 2 Interface Vol. 96-1 (The Electrochemical Society: Pennington, NJ, 1996), pp. 555–567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Passlack, M. (2005). Methodology for Development of High-κ Stacked Gate Dielectrics on III–V Semiconductors. In: Demkov, A.A., Navrotsky, A. (eds) Materials Fundamentals of Gate Dielectrics. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3078-9_12

Download citation

Publish with us

Policies and ethics