Skip to main content

Optical Isotope Ratio Measurements in Hydrology

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Begley, I.S., Scrimgeour, C.M. (1997) High-precision δ2H and δ18O measurement for water and volatile organic compounds by continuous-flow pyrolysis isotope ratio mass spectrometry. Anal. Chem. 69, 1530–1535.

    Article  CAS  Google Scholar 

  • Berden, G., Peeters, P., Meijer, G. (2000) Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Chem. Phys. 19, 565–607.

    CAS  Google Scholar 

  • Bigeleisen, J., Perlman, M.J., Prosser, H. (1952) Conversion of hydrogenic materials for hydrogen to isotopic analysis. Anal. Chem. 24, 1356–1357.

    Article  CAS  Google Scholar 

  • Brand, W.A., Avak, H., Seedorf, R., Hofmann, D., Conradi, Th. (1996) New methods for fully automated isotope ratio determination from hydrogen at the natural abundance level. Isotopes Environ. Health Stud. 32, 263–273.

    CAS  Google Scholar 

  • Coplen, T.B., Wildman, J.D., Chen, J. (1991) Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis. Anal. Chem. 63, 910–912.

    Article  CAS  Google Scholar 

  • Demtröder, W. (1982) Laser Spectroscopy: Basic Concepts And Instrumentation, 2nd edn, Springer-Verlag, Berlin.

    Google Scholar 

  • Dimeff, J. (1972) Nondispersive Gas Analyzing Method and Apparatus Wherein Radiation as Serially Passed through a Reference and Unknown Gas. U.S. Patent 3,679,899.

    Google Scholar 

  • Epstein, S., Mayada, T.K. (1953) Variations of O-18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224.

    Article  CAS  Google Scholar 

  • Esler, M.B., Griffith, D.W.T., Turatti, F., Wilson, S.R., Rahn, T., Zhang, H. (2000) N2O concentration and flux measurements and complete isotopic analysis by FTIR spectroscopy. Chemosphere — Global Change Science 2, 445–454.

    CAS  Google Scholar 

  • Esler, M.B., Griffith, D.W.T., Wilson, S.R., Steele, L.P. (2000) Precision trace gas analysis by FT-IR spectroscopy. 2. The13C/12C isotope ratio of CO2. Anal. Chem. 72, 216–221.

    CAS  Google Scholar 

  • Fusch, Ch. (1985) Quantitative Analyse von D2O-Konzentrationen im Serum mit der Infrarot-Spektroskopie. Inaugural-Dissertation, Universität Tübingen.

    Google Scholar 

  • Fusch, Ch., Spririg, N., Moeller, H. (1993) Fourier Transform Infrared Spectroscopy Measures 1H/2H Ratios of Native Water With a Precision Comparable to that of Isotope Ratio Mass Spectrometry. Eur. J. Clin. Chem. Clin. Biochem. 31, 639–644.

    CAS  Google Scholar 

  • Gaunt, J. (1956) The analysis of heavy water by infra-red spectrometry. Spectrochim. Acta 8, 57–65.

    Article  CAS  Google Scholar 

  • Gehre, M., Höfling, R., Kowski, P (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromiun metal. Anal. Chem. 68, 4414.

    Article  CAS  Google Scholar 

  • Gianfrani, L., Gagliardi, G., Burgel, M. van, Kerstel, E.R.Th. (2003) Isotope analysis of water by means of near-infrared dual-wavelength diode laser spectroscopy. Optics Express 11, 1566–1576.

    Article  CAS  Google Scholar 

  • Horita, J., Gat, J.R. (1988) Procedure for the hydrogen isotope analysis of water from concentrated brines. Chemical Geology, Isotope Geoscience Section 72, 85–88

    Google Scholar 

  • Horita, J., Ueda, A., Mitzukami, K., Takatori, I. (1989) Automatic D and 18O analyses of multi-water samples using H2-and CO2-water equilibration methods with a common equilibration set-up. Int. J. Rad. Appl. Instrum., part A: Appl. Radiat. Isot. 40, 801–805.

    CAS  Google Scholar 

  • International Atomic Energy Agency (2001) New Approaches for Stable Isotope Ratio Measurements (Proc. Advisory Group Meeting, Vienna, 1999) IAEA-TECDOC-1247, IAEA, Vienna, p. 147, and Table II, p. 140.

    Google Scholar 

  • Irving, C., Klein, P.D., Navratil, P.R., Boutton, T.W. (1986) Measurement of 13CO2/12CO2 abundance by nondispersive infrared heterodyne radiometry as an alternative to gas isotope ratio mass spectrometry. Anal. Chem. 58, 2172–2178.

    Article  CAS  Google Scholar 

  • Jasper, J.P. (2001) Quantitative estimates of precision for molecular isotopic measurements. Rapid Commun. Mass Spectrom. 15, 1554–1557.

    Article  CAS  Google Scholar 

  • Kerstel, E.R.Th. (2001) O-17 Analysis of Ontario Hydro Heavy Water, Customer report No. 2001-32, Centre for Isotope Research, Groningen, The Netherlands.

    Google Scholar 

  • Kerstel, E.R.Th., Gagliardi, G., Gianfrani, L., Meijer, H.A.J., Trigt, R. van, Ramaker R. (2002) Determination of the 2H/1H, 17O/16O, and 18O/16O isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 µm. Spectrochim. Acta A 58, 2389–2396.

    Google Scholar 

  • Kerstel, E.R.Th., (2004) Stable isotope ratio infrared spectrometry. Handbook of Stable Isotope Analytical Techniques (P.A. de Groot, Ed.) Elsevier (in press).

    Google Scholar 

  • Kerstel, E.R.Th., Trigt, R. van, Dam, N., Reuss, J., H.A.J. Meijer (1999) Simultaneous determination of the 2H/1H, 17O/16O, and 18O/16O isotope abundance ratios in water by means of laser spectrometry. Anal. Chem. 71, 5297–5303.

    Article  CAS  Google Scholar 

  • Matsumi, Y., Kishigami, M., Tanaka, N., Kawasaki, M., Inoue, G. (1998) Isotope 18O/16O ratio measurements of water vapor by use of photoacoustic spectroscopy. Appl. Opt. 37, 6558–6562.

    Article  CAS  Google Scholar 

  • Meijer, H.A.J., Li, W.J. (1998). The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isotopes in Environ. Health Stud. 34, 349–369.

    CAS  Google Scholar 

  • Meijer, H.A.J. (2001) Isotope ratio analysis on water: a critical look at developments. New Approaches for Stable Isotope Ratio Measurements (Proc. Advisory Group Meeting, 1999) IAEA-TECDOC-1247, IAEA, Vienna, 105–112.

    Google Scholar 

  • Murnick, D.E., Colgan, M.J., Stoneback, D.N. (1998) Laser optogalvanic effect isotope ratio analysis in carbon dioxide. Synthesis and Applications of Isotopes and Isotopically Labelled Compounds (J.R. Heys, D.G. Melillo, Eds) John Wiley and Sons, Chichester, 111–115.

    Google Scholar 

  • Phillips, A., Fourel, F., Morrison, J. (2000) Oxygen-deuterium isotopic measurements using a variety of pyrolysis methods — IRMS continuous-flow techniques. Isotopes in Environ. Health Stud. 36, 347.

    Google Scholar 

  • Socki, R.A., Romanek, C.S., Gibson, E.K. (1999) On-line technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water. Anal. Chem. 71, 2250–2253.

    Article  CAS  Google Scholar 

  • Speakman, J.R. (1997) Doubly Labelled Water, Theory and Practice, Chapman & Hall: London.

    Google Scholar 

  • Trigt, R. van, Kerstel, E.R.Th., Meijer, H.A.J., McLean, M., Visser, G.H. (2002) Validation of the DLW method in Japanese quail at various water fluxes using laser and IRMS. J. Appl. Physiol. 93, 2147–2154.

    Google Scholar 

  • Trigt, R. van, Kerstel, E.R.Th., Visser, G.H., Meijer, H.A.J. (2001) Stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry. Anal. Chem. 73, 2445–2452.

    Google Scholar 

  • Trigt, R. van, Meijer, H.A.J., Sveinbjornsdottir, A. E., Johnsen, S. J., Kerstel, E.R.Th. (2002) Measuring stable isotopes of hydrogen and oxygen in ice by means of laser spectrometry: the Bølling transition in the Dye-3 (South Greenland) ice core. Ann. Glaciology 35, 125–130.

    Google Scholar 

  • Turatti, F., Griffith, D.W.T., Wilson, S.R., Esler, M.B., Rahn, T., Zhang, H., Blake, G.A. (2000) Positionally dependent 15N fractionation factors in the UV photolysis of N2O determined by high resolution FTIR spectroscopy. Geophys. Res. Lett. 27, 2489–2492.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Kerstel, E., Meijer, H. (2005). Optical Isotope Ratio Measurements in Hydrology. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_9

Download citation

Publish with us

Policies and ethics