Skip to main content

Scanning Probe Microscopy of Piezoelectric and Transport Phenomena in Electroceramic Materials

  • Conference paper
  • 1795 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hench, L.L. and West, J.K., Eds. (1990) Principles of electronic ceramics, Wiley Interscience, New York.

    Google Scholar 

  2. Buchanan, R., Ed. (1991) Ceramic materials for electronics, Marcel Dekker Inc., New York.

    Google Scholar 

  3. Levinson, L.M., Ed. (1988) Electronic Ceramics: Properties, Devices and Applications, Marcel Dekker Inc., New York.

    Google Scholar 

  4. Sutton, A.P. and Ballufi, R.A. (1995) Interfaces in Crystalline Materials, Oxford University Press, Oxford.

    Google Scholar 

  5. Balcells, L.L., Fontcuberta, J., Martinez, B., and Obradors, X. (1998) Magnetic surface effects and low-temperature magnetoresistance in manganese perovskites, J. Phys. C 10, 1883–1890.

    Google Scholar 

  6. Ziese, M. (2002) Extrinsic magnetotransport phenomena in ferromagnetic oxides, Rep. Prog. Phys. 65, 143–249.

    Article  ADS  Google Scholar 

  7. Sun, J.Z. and Gupta, A. (1998) Spin-dependent transport and low-field magnetoresistance in doped manganites, Annu. Rev. Mat. Sci. 28, 45–78.

    Article  ADS  Google Scholar 

  8. Hilgenkamp, H. and Mannhart, J. (2002) Grain boundaries in high-T-c superconductors, Rev. Mod. Phys. 74, 485–549.

    Article  ADS  Google Scholar 

  9. Huybrechts, B., Ishizaki, K., and Takata, M. (1995) The positive-temperature coefficient of resistivity in barium-titanate, J. Mat. Sci. 30, 2463–2474.

    Article  ADS  Google Scholar 

  10. Amin, A., and Newnham, R.E. (1992) Thermistors, Key Eng. Mater. 66&67, 339–373.

    Article  Google Scholar 

  11. Desu, S.B. (1992) Interfacial effects in perovskites, Key. Eng. Mater. 66&67, 375–420.

    Article  Google Scholar 

  12. Lines, M.E. and Glass, A.M. (1977) Principles and Applications of Ferroelectric and Related Materials, Clarendon Press, Oxford.

    Google Scholar 

  13. Setter, N. and Colla, E.L., Eds. (1993) Ferroelectric Ceramics, Birkhauser Verlag, Basel.

    Google Scholar 

  14. Jaffe, B. Cook Jr., W.R., and Jaffe, H. (1971) Piezoelectric Ceramics, Academic Press, New York.

    Google Scholar 

  15. Kalinin, S.V. and Bonnell, D.A. (2001) Scanning impedance microscopy of electroactive interfaces, Appl. Phys. Lett. 78, 1306–1308.

    Article  ADS  Google Scholar 

  16. Kalinin, S.V. and Bonnell, D.A. (2001) Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63, 125411.

    ADS  Google Scholar 

  17. Kalinin, S.V., Suchomel, M.R., Davies, P.K., and Bonnell, D.A. (2002) Potential and impedance Imaging of polycrystalline BiFeO3 ceramics, J. Am. Ceram. Soc. 85, 3011–3017.

    Article  Google Scholar 

  18. Kalinin, S.V. and Bonnell, D.A. (2002) Scanning impedance microscopy of an active Schottky barrier diode, J. Appl. Phys. 91, 832–839.

    Article  ADS  Google Scholar 

  19. Macdonald, J.R., Ed. (1987) Impedance Microscopy: Emphasizing Solid Materials and Systems, John Wiley, New York.

    Google Scholar 

  20. Blatter, G. and Greuter, F. (1986) Carrier Transport Through Grain-Boundaries in Semiconductors, Phys. Rev. B 33, 3952–3966.

    ADS  Google Scholar 

  21. Kalinin, S.V. (2002) Nanoscale Electric Phenomena at Oxide Surfaces and Interfaces by Scanning Probe Microscopy, Ph.D. Thesis, University of Pennsylvania, Philadelphia.

    Google Scholar 

  22. Shao, R., Kalinin, S.V., and Bonnell, D.A. (2003) Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy, Appl. Phys. Lett. 82, 1869–1871.

    Article  ADS  Google Scholar 

  23. Browning, N.D., Buban, J.P., Moltaji, H.O., Pennycook, S.J., Duscher, G., Johnson, K.D., Rodrigues, R.P., and Dravid, V.P. (1999) The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3, Appl. Phys. Lett. 74, 2638–2640.

    Article  ADS  Google Scholar 

  24. Command reference manual, Digital Instruments (1997).

    Google Scholar 

  25. McDaniel, E.B., McClain, S.C., and Hsu, J.W. P. (1988) Nanometer scale polarimetry studies using a near-field scanning optical microscope, Appl. Optics 37, 84–92.

    Article  ADS  Google Scholar 

  26. Kalinin, S.V. and Bonnell, D.A. (2000) Surface potential at surface-interface junctions in SrTiO3 bicrystals, Phys. Rev. B 62, 10419–10430.

    ADS  Google Scholar 

  27. Kalinin, S.V., Duscher, G., and Bonnell, D.A. to be published.

    Google Scholar 

  28. Domansky, K., Leng, Y., Williams, C.C., Janata, J., and Petelenz, D. (1993) Mapping of Mobile Charges on Insulator Surfaces with the Electrostatic Force Microscope, Appl. Phys. Lett. 63, 1513–1515.

    Article  ADS  Google Scholar 

  29. Kalinin, S.V., Freitag, M. Johnson, A.T., and Bonnell, D.A. (2002) Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies, Appl. Phys. Lett. 81, 754–756.

    Article  ADS  Google Scholar 

  30. Kalinin, S.V., Johnson, C.Y., and Bonnell, D.A. (2002) Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface, J. Appl. Phys. 91, 3816–3823.

    Article  ADS  Google Scholar 

  31. Johnson, K.D. and Dravid, V.P. (2000) Static and dynamic electron holography of electrically active grain boundaries in SrTiO3, Interface Science 8, 189–198.

    Article  Google Scholar 

  32. Popov, G., Kalinin, S.V., Alvarez, T., Emge, T.J., Greenblatt, M., and Bonnell, D.A. (2002) Micromagnetic and magnetoresistance studies of ferromagnetic La0.83Sr0.13MnO2.98 crystals, Phys. Rev. B 65, 064426.

    ADS  Google Scholar 

  33. Verghese, P.M. and Clarke, D.R. (2000) Piezoelectric contributions to the electrical behavior of ZnO varistors, J. Appl. Phys. 87, 4430–4438.

    Article  ADS  Google Scholar 

  34. Fleig, J. (2002) The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data, Solid State Ionics 150, 181–193.

    Article  Google Scholar 

  35. Rodewald, S., Fleig, J., and Maier, J. (2001) The distribution of grain boundary resistivities in SrTiO3 polycrystals: a comparison between spatially resolved and macroscopic measurements, J. Eur. Ceram. Soc. 21, 1749–1752.

    Article  Google Scholar 

  36. Fischer, P., Polomska, M., Sosnowska, I., and Szymanski, M. (1980) Temperature Dependence of the Crystal and Magnetic Structures of BiFeO3, J. Phys. C 13, 1931–1940.

    ADS  Google Scholar 

  37. Mahesh Kumar, M., Srinivas, A., Suryanarayana, S.V., and Bhimasankaram, T. (1988) Dielectric and impedance studies on BiFeO3-BaTiO3 solid solutions, Phys. Stat. Sol. A 165, 317–326.

    ADS  Google Scholar 

  38. Polomska, M., Kaczmarek, W., and Pajak, Z. (1974) Electric and Magnetic Properties of Bi1−xLaxFeO3 Solid Solutions, Phys. Stat. Sol. A 23, 567–574.

    Article  ADS  Google Scholar 

  39. MacChesney, J.B., Jetzt, J.J., Potter, J.F., Williams, H.J., and Sherwood, R.C. (1966) Electrical and Magnetic Properties of System SrFeO3 — BiFeO3, J. Am. Ceram. Soc. 49, 644.

    Article  Google Scholar 

  40. Borisevich, A.Y., Kalinin, S.V., Bonnell, D.A., and Davies, P.K. (2001) Analysis of phase distributions in the Li2O-Nb2O5-TiO2 system by piezoresponse imaging, J. Mater. Res. 16, 329–332.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Kalinin, S., Bonnell, D. (2005). Scanning Probe Microscopy of Piezoelectric and Transport Phenomena in Electroceramic Materials. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_9

Download citation

Publish with us

Policies and ethics