Skip to main content

Nanometer-Scale Electronics and Storage

  • Conference paper
  • 1780 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

Abstract

The ability to control the placement of molecules is essential for the patterning and fabrication of nanoscale electronic devices. We apply selective chemistry and self-assembly in combination with conventional nanolithographic techniques to reach higher resolution, greater precision, and chemical versatility in the nanostructures that we create. We illustrate three successful approaches: (1) phase separation of self-assembled monolayers (SAMs) by terminal and internal functionalization, (2) phase separation of SAMs induced by post-adsorption processing and (3) control of molecular placement by insertion into a self-assembled monolayer. These methods demonstrate the possibilities of patterning films by exploiting the intrinsic properties of the molecules. We then employ these self-assembled monolayers as a means to isolate molecules with electronic function to determine the mechanisms of function, and the relationships between molecular structure, environment, connection, coupling, and function. Using self-assembly techniques in combination with scanning tunneling microscopy (STM) we are able to study candidate molecular switches individually and in small bundles. Alkanethiolate SAMs on gold are used as a host two-dimensional matrix to isolate and to insulate electrically the molecular switches. We then individually address and electronically probeeach moleculeusing STM. The conjugated molecules exhibit reversible conductance switching, manifested as a change in the topographic height in the STM images. The origins of switching and the relevant aspects of the molecular structure and environment required will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rai-Chaudhury, P. (1997) Handbook of Microlithography, Micromachining, and Microfabrication; SPIE: London.

    Google Scholar 

  2. Xia, Y.N. and Whitesides, G.M. (1998) Soft lithography, Angewandte Chemie, International Edition, 37, 551–575.

    Article  Google Scholar 

  3. Zhao, X.M., Xia, Y.N., and Whitesides, G.M. (1997) Soft lithographic methods for nano-fabrication, J. Mater. Chem. 7, 1069–1074.

    Article  Google Scholar 

  4. Becker, R.S., Golovchenko, J.A., and Swartzentruber, B. S. (1987) Atomic-scale surface modifications using a tunneling microscope, Nature 325, 419–421.

    Article  ADS  Google Scholar 

  5. Eigler, D.M. and Schweizer, E.K. (1990) Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526.

    Article  ADS  Google Scholar 

  6. Weiss, P.S. and Eigler, D.M. (1993) NATO ASI Series E: Applied Sciences, 235, 213–217.

    Google Scholar 

  7. Gimzewski, J. K. and Joachim, C. (1999) Nanoscale science of single molecules using local probes, Science 283, 1683–1688.

    Article  ADS  Google Scholar 

  8. Hla, S.-W., Bartels, L., Meyer, G., and Rieder, K.-H. (2000) Inducing all steps of a chemical reaction with a scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85, 2777–2780.

    Article  ADS  Google Scholar 

  9. Ulman, A. (1991) An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic, San Diego.

    Google Scholar 

  10. Ulman, A. (1996) Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96, 1533–1554.

    Article  Google Scholar 

  11. Nuzzo, R.G. and Allara, D.L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces, J. Amer. Chem. Soc. 105, 4481–4483.

    Article  Google Scholar 

  12. Allara, D.L. (1995) Critical issues in applications of self-assembled monolayers, Biosensors and Bioelectronics 10, 771–783.

    Article  Google Scholar 

  13. Bain, C.D. and Whitesides, G.M. (1989) Formation of monolayers by the adsorption of thiols on gold: Variation in the length of the alkyl chain, J. Amer. Chem. Soc. 111, 7164–7175.

    Article  Google Scholar 

  14. Bain, C.D. and Whitesides, G.M. (1989) A study by contact angle of the acid-base behavior of monolayers containing Ω-mercaptocarboxylic acids adsorbed on gold: An example of reactive spreading, Langmuir 5, 1370–1378.

    Article  Google Scholar 

  15. Dubois, L.H. and Nuzzo, R.G. (1992) Synthesis, structure, and properties of model organic surfaces, Annu. Rev.Phys. Chem. 43, 437–463.

    ADS  Google Scholar 

  16. Poirier, G.E. (1997) Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy, Chem. Rev. 97, 1117–1127.

    Article  Google Scholar 

  17. Hong, S., Zhu, J., and Mirkin, C.A. (1999) Multiple ink nanolithography: Toward a multiple pen nanoplotter, Science 286, 523–525.

    Article  Google Scholar 

  18. Liu, G.-Y., Xu, S., and Qian, Y.L. (2000) Nanofabrication of self-assembled monolayers using scanning probe lithography, Acc. Chem. Res. 33, 457–466.

    Article  Google Scholar 

  19. Zharnikov, M., Frey, S., Heister, K., and Grunze, M. (2000) Modification of alkanethiolate monolayers by low energy electron irradiation: Dependence on the substrate material and on the length and isotopic composition of the alkyl chains, Langmuir 16, 2697–2705.

    Article  Google Scholar 

  20. Gölzhäuser, A., Geyer, W., Stadler, V., Eck, W., Grunze, M., Edinger, K., Weimann, T., and Hinze, P. (2000) Nanoscale patterning of self-assembled monolayers with electrons, Journal of Vacuum Science & Technology B 18, 3414–3418.

    Article  ADS  Google Scholar 

  21. Heister, K., Zharnikov, M., Grunze, M., Johansson, L.S.O., and Ulman, A. (2001) Characterization of X-ray induced damage in alkanethiol monolayers by high-resolution photoelectron spectroscopy, Langmuir 17, 8–11.

    Article  Google Scholar 

  22. Collet, J., Tharaud, O., Chapoton, A., and Vuillaume, D. (2000) Low-voltage, 30 nm channel length, organic transistors with a self-assembled as gate insulating films, Appl. Phys. Lett. 76, 1941–1943.

    Article  ADS  Google Scholar 

  23. Collet, J. and Vuillaume, D. (1998) Nano-field effect transistor with an organic self-assembled monolayer as gate insulator, Appl. Phys. Lett. 73, 2681–2683.

    Article  ADS  Google Scholar 

  24. Boulas, C., Davidovits, J.V., Rondelez, F., and Vuillaume, D. (1996) Suppression of charge carrier tunneling through organic self-assembled monolayers, Phys. Rev. Lett. 76, 4797–4800.

    Article  ADS  Google Scholar 

  25. Lee, S.A., Yoshida, Y., Fukuyama, M., and Hotta, S. (1999) Phenyl-capped oligothiophenes: novel lightemitting materials with different molecular alignments in thin films, Synthetic Metals, 106, 39–43.

    Article  Google Scholar 

  26. Bain, C.D. and Whitesides, G.M. (1988) Formation of 2-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols, J. Amer. Chem. Soc. 110, 6560–6561.

    Article  Google Scholar 

  27. Bain, C.D., Evall, J., and Whitesides, G.M. (1989) Formation of monolayers by the coadsorption of thiols on gold: Variation in the head group, tail group, and solvent, J. Amer. Chem. Soc. 111, 7155–7164.

    Article  Google Scholar 

  28. Folkers, J.P., Laibinis, P.E., Whitesides, G.M., and Deutch, J. (1994) Phase behavior of two-component self-assembled monolayers of alkanethiolates on gold, J. Phys. Chem. 98, 563–571.

    Article  Google Scholar 

  29. Smith, R.K., Reed, S.M., Lewis, P.A., Monnell, J.D., Clegg, R.S., Kelly, K.F., Bumm, L.A., Hutchison, J.E., and Weiss, P.S. (2001) Phase separation within a binary self-assembled monolayer on Au{111} driven by an amide-containing alkanethiol, J. Phys. Chem. B 105, 1119–1122.

    Google Scholar 

  30. Stranick, S.J., Parikh, A.N., Tao, Y.-T., Allara, D.L., and Weiss, P.S. (1994) Phase-separation of mixed-composition self-assembled monolayers into nanometer-scale molecular domains, J. Phys. Chem. 98, 7636–7646.

    Article  Google Scholar 

  31. Stranick, S.J., Atre, S.V., Parikh, A.N., Wood, M.C., Allara, D.L., Winograd, N., and Weiss, P.S. (1996) Nanometer-scale phase separation in mixed composition self-assembled monolayers, Nanotechnology 7, 438–442.

    Article  ADS  Google Scholar 

  32. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982) Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178–180.

    Article  ADS  Google Scholar 

  33. Binnig, G., Quate, C.F., and Gerber, C. (1986) Atomic force microscope, Phys. Rev. Lett. 56, 930–933.

    Article  ADS  Google Scholar 

  34. Delamarche, E., Michel, B., Gerber, C., Anselmetti, D., Güntherodt, H.-J., Wolf, H., and Ringsdorf, H. (1994) Real-space observation of nanoscale molecular domains in self-assembled monolayers, Langmuir 10, 2869–2871.

    Article  Google Scholar 

  35. Anselmetti, D., Baratoff, A., Güntherodt, H.-J., Delamarche, E., Michel, B., Gerber, C., Kang, H., Wolf, H., and Ringsdorf, H. (1994) Domain and molecular superlattice structure of dodecanethiol self-assembled On Au(111), Europhys. Lett. 27, 365–370.

    Article  ADS  Google Scholar 

  36. Camillone, N., Eisenberger, P., Leung, T.Y.B., Schwartz, P., Scoles, G., Poirier, G.E., and Tarlov, M.J. (1994) New monolayer phases of n-alkanethiols self-assembled on Au(111): Preparation, surface characterization, and imaging, J. Chem. Phys. 101, 11031–11036.

    Article  ADS  Google Scholar 

  37. Bumm, L.A., Arnold, J.J., Charles, L.F., Dunbar, T.D., Allara, D.L., and Weiss, P.S. (1999) Directed self-assembly to create molecular terraces with molecularly sharp boundaries in organic monolayers, J. Amer. Chem. Soc. 121, 8017–8021.

    Article  Google Scholar 

  38. Clegg, R.S. and Hutchison, J.E. (1996) Hydrogen-bonding, self-assembled monolayers: Ordered molecular films for study of through-peptide electron transfer, Langmuir 12, 5239–5243.

    Article  Google Scholar 

  39. Clegg, R.S. and Hutchison, J.E. (1999) Control of monolayer assembly structure by hydrogen bonding rather than by adsorbate-substrate templating, J. Amer. Chem. Soc. 121, 5319–5327.

    Article  Google Scholar 

  40. Clegg, R.S., Reed, S.M., Smith, R.K., Barron, B.L., Rear, J.A., and Hutchison, J.E. (1999) The interplay of lateral and tiered interactions in stratified self-organized molecular assemblies, Langmuir 15, 8876–8883.

    Article  Google Scholar 

  41. Lewis, P.A., Smith, R.K., Kelly, K.F., Bumm, L.A., Reed, S.M., Clegg, R.S., Gunderson, J.D., Hutchison, J.E., and Weiss, P.S. (2001) The role of buried hydrogen bonds in self-assembled mixed composition thiols on Au{111}, J. Phys. Chem. B 105, 10630–10636.

    Google Scholar 

  42. Finklea, H.O., Ravenscroft, M.S., and Snider, D.A. (1993) Electrolyte and temperature effects on long-range electron-transfer across self-assembled monolayers, Langmuir 9, 223–227.

    Article  Google Scholar 

  43. Bumm, L.A., Arnold, J.J., Dunbar, T.D., Allara, D.L., and Weiss, P.S. (1999) Electron transfer through organic molecules, J. Phys. Chem. B 103, 8122–8127.

    Google Scholar 

  44. Weiss, P.S., Bumm, L.A., Dunbar, T.D., Burgin, T.P., Tour, J.M., and Allara, D.L. (1998) Molecular Electronics: Science and Technology 852, 145–168.

    Google Scholar 

  45. Arnold, J.J. (1997) Masters thesis, The Pennsylvania State University, University Park.

    Google Scholar 

  46. Tour, J.M. (2000) Molecular electronics: Synthesis and testing of components, Acc. Chem. Res. 33, 791–804.

    Article  Google Scholar 

  47. Cygan, M.T., Dunbar, T.D., Arnold, J.J., Bumm, L.A., Shedlock, N.F., Burgin, T.P., Jones, L., Allara, D.L., Tour, J.M., and Weiss, P.S. (1998) Insertion, conductivity, and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au{111}, J. Amer. Chem. Soc. 120, 2721–2732.

    Article  Google Scholar 

  48. Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones II, L., Allara, D.L., Tour, J.M., and Weiss, P.S. (1996) Are single molecular wires conducting?, Science 271, 1705–1707.

    Article  ADS  Google Scholar 

  49. Langlais, V.J., Schlittler, R.R., Tang, H., Gourdon, A., Joachim, C., and Gimzewski, J.K. (1999) Spatially resolved tunneling along a molecular wire, Phys. Rev. Lett. 83, 2809–2812.

    Article  ADS  Google Scholar 

  50. Moresco, F., Meyer, G., Rieder, K.-H., Tang, H., Gourdon, A., and Joachim, C. (2001) Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching, Phys. Rev. Lett. 86, 672–675.

    Article  ADS  Google Scholar 

  51. Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., Rawlett, A.M., Allara, D.L., Tour, J.M., and Weiss, P.S. (2001) Conductance switching in single molecules through conformational changes, Science 292, 2303–2307.

    Article  Google Scholar 

  52. Joachim, C., Gimzewski, J.K., Schlittler, R.R., and Chavy, C. (1995) Electronic transparency of a single C60 molecule, Phys. Rev. Lett. 74, 2102–2105.

    Article  ADS  Google Scholar 

  53. Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., and Tour, J.M. (2001) Molecular random access memory cell, Appl. Phys. Lett. 78, 3735–3737.

    Article  ADS  Google Scholar 

  54. Chen, J., Wang, W., Reed, M.A., Rawlett, A.M., Price, D.W., and Tour, J.M. (2000) Room-temperature negative differential resistance in nanoscale molecular junctions, Appl. Phys. Lett. 77, 1224–1226.

    Article  ADS  Google Scholar 

  55. Chen, J., Reed, M.A., Rawlett, A.M., and Tour, J.M. (1999) Large on—off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552.

    Article  Google Scholar 

  56. Seminario, J.M., Zacarias, A.G., and Tour, J.M. (2000) Theoretical study of a molecular resonant tunneling diode, J. Amer. Chem. Soc. 122, 3015–3020.

    Article  Google Scholar 

  57. Seminario, J.M., Zacarias, A.G., and Tour, J.M. (1998) Molecular current-voltage characteristics, J. Amer. Chem. Soc. 120, 3970–3397.

    Article  Google Scholar 

  58. Tour, J.M. (1996) Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures`, Chem. Rev. 96, 537–553.

    Article  Google Scholar 

  59. Tour, J.M., Kozaki, M., and Seminario, J.M. (1998) Molecular scale electronics: A synthetic/computational approach to digital computing, J. Amer. Chem. Soc. 120, 8486–8493.

    Article  Google Scholar 

  60. Tour, J.M., Reinerth, W.A., Jones II, L., Burgin, T.P., Zhou, C.W., Muller, C.J., Deshpande, M.R., and Reed, M.A. (1998) Molecular Electronics: Science and Technology, 852, 197–204.

    Google Scholar 

  61. Di Ventra, M., Kim, S.G., Pantelides, S.T., and Lang, N.D. (2001) Temperature effects on the transport properties of molecules, Phys. Rev. Lett. 86, 288–291.

    Article  ADS  Google Scholar 

  62. Weck, M., Jackiw, J.J., Weiss, P.S., and Grubbs, R.H. (1998) Ring-opening metathesis polymerization from surfaces, Proceedings of Polymers, Materials Science, and Engineering 79, 72–73.

    Google Scholar 

  63. Weck, M., Jackiw, J.J., Rossi, R.R., Weiss, P.S., and Grubbs, R.H. (1999) Ring-opening metathesis polymerization from surfaces, J. Amer. Chem. Soc. 121, 4088–4089.

    Article  Google Scholar 

  64. Charles, L.F. (1999) Masters thesis, The Pennsylvania State University: University Park.

    Google Scholar 

  65. Sakaguchi, H., Kelly, K.F., Donhauser, Z.J., Lewis, P.A., and Weiss, P.S., manuscript in preparation.

    Google Scholar 

  66. Donhauser, Z.J., Price II, D.W., Tour, J.M., and Weiss, P.S. (2003) Control of alkanethiolate monolayer structure using vapor-phase annealing, J. Amer. Chem. Soc. 125, 11462–11463.

    Article  Google Scholar 

  67. Molecular Imaging Corp., Phoenix, AZ, USA.

    Google Scholar 

  68. Mantooth, B.A., Donhauser, Z.J., Kelly, K.F., and Weiss, P.S. (2002) Cross-correlation image tracking for drift correction and adsorbate analysis, Review of Scientific Instruments 73, 313–317.

    Article  ADS  Google Scholar 

  69. Herrmann, C.F. and Boland, J.J. (1999) Probing repulsive interactions on the Si(100)(2x1) surface by local tip-induced excitation, J. Phys. Chem. B 103, 4207–4211.

    Google Scholar 

  70. Akpati, H.C., Norlander, P., Lou, L., and Avouris, P. (1997) The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si(111), Surface Science 372, 9–20.

    Article  ADS  Google Scholar 

  71. Tao, Y.-T., Wu, C.C., Eu, J.Y., Lin, W.L., and Wu, K.C. (1997) Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold, Langmuir 13, 4018–4023.

    Article  Google Scholar 

  72. Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J.E. (1993) Structure and bonding of alkanethiolates on gold and silver surfaces: Implications for self-assembled monolayers, J. Amer. Chem. Soc. 115, 9389–9401.

    Article  Google Scholar 

  73. Kornilovitch, P.E. and Bratkovsky, A.M. (2001) Orientational dependence of current through molecular films, Phys. Rev. B 64, 5413–5417.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Kelly, K., Donhauser, Z., Lewis, P., Smith, R., Weiss, P. (2005). Nanometer-Scale Electronics and Storage. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_15

Download citation

Publish with us

Policies and ethics