Skip to main content

Nanoinspection of Dielectric and Polarization Properties at Inner and Outer Interfaces in Functional Ferroelectric PZT Thin Films

  • Conference paper
Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

Abstract

We report on novel approaches using scanning force methods [i.e. piezoresponse force microscopy (PFM), Kelvin probe force microscopy (KPFM) and pull-off force spectroscopy (PFS)] in order to deduce the local dielectric and polarization properties on functional ferroelectric PZT thin films both at outer and inner interfaces with a lateral resolution of better than 50 nm. We show that the polarization profile into the depth of the PZT sample varies dramatically being built up at the bottom Pt electrode over a transition layer of more than 200 nm in thickness. Also this interfacial area shows a different relaxation behavior upon switching. The results are explained both in the view of negatively charged defects pinned at the PZT/Pt interface as well as the possible variation in the local dielectric properties across the film thickness. Investigating the latter made the quantitative deduction of values such as the effective dielectric polarization P z , the deposited charge density σ, and the surface dielectric constant εsurface in thin ferroelectric PZT films necessary. We illustrate that such measurements in fact are possible on the nanometer scale revealing quantitative data when combining PFM and PFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., and Ferris J.H. (2002) Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures, Nanoletters 2, 589–593.

    ADS  Google Scholar 

  2. Scott, J.F. (2000) Ferroelectric Memories, Springer.

    Google Scholar 

  3. Colla, E.L., Taylor, D.V., Tagantsev, A.K., and Setter N. (1998) Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes, Appl. Phys. Lett. 72, 2478–2480.

    Article  ADS  Google Scholar 

  4. Lee, J.J., Thio, C.L., and Desu, S.B. (1995) Electrode contacts on ferroelectric Pb(ZrxTi1−x )O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties, J. Appl. Phys. 78, 5073–5078.

    Article  ADS  Google Scholar 

  5. Alexe, M., Harnagea, C., Hesse D., and Gösele U. (2001) Polarization imprint and size effects in mesoscopic ferroelectric structures, Appl. Phys. Lett. 79, 242–244.

    Article  ADS  Google Scholar 

  6. Lin, C.H., Friddle, P.A., Ma, C.H., Daga, A. and Chen H. (2001) Effects of thickness on the electrical properties of metalorganic chemical vapor deposited Pb(Zr, Ti)O3 (25–100 nm) thin films on LaNiO3 buffered Si, J. Appl. Phys. 90, 1509–1515.

    Article  ADS  Google Scholar 

  7. Cillessen, J.F.M., Prins, M.W.J., and Wolf, R.M. (1997) Thickness dependence of the switching voltage in all-oxide ferroelectric thin-film capacitors prepared by pulsed laser deposition, J. Appl. Phys. 81, 2777–2783.

    Article  ADS  Google Scholar 

  8. Jiang, J.C., Tian, W., Pan, X.Q., Gan, Q., and Eom C.B. (1998) Domain structure of epitaxial SrRuO3 thin films on miscut (001) SrTiO3 substrates, Appl. Phys. Lett. 72, 2963–2965.

    Article  ADS  Google Scholar 

  9. Lee, H.N., Senz, S., Zakharov, N.D., Harnagea, C., Pignolet, A., Hesse, D., and Gösele U. (2000) Growth and characterization of non-c-oriented epitaxial ferroelectric SrBi2Ta2O9 films on buffered Si(100), Appl. Phys. Lett. 77, 3260–3262.

    Article  ADS  Google Scholar 

  10. Eng, L.M., Bammerlin, M., Loppacher, Ch., Guggisberg, M., Bennewitz, R., Meyer, E., and Güntherodt, H.-J. (1999) Ferroelectric Domains and Material Contrast Down to a 5 nm Lateral Resolution on Uniaxial Ferroelectric TGS Crystals, Surf. Interface Analysis 27, 422–425.

    Article  Google Scholar 

  11. Eng, L.M., Bammerlin, M., Loppacher, Ch., Guggisberg, M., Bennewitz, R., Lüthi, R., Meyer, E., and Güntherodt, H.-J. (1999) Surface morphology, chemical contrast, and ferroelectric domains in TGS bulk single crystals differentiated with UHV non-contact force microscopy, Appl. Surf. Sci. 140, 253–258.

    Article  ADS  Google Scholar 

  12. Loppacher, Ch., Schlaphof, F., Schneider, S., Zerweck, U., Grafström, S., Eng, L.M., Roelofs, A., and Waser R. (2003) Lamellar ferroelectric domains in PbTiO3 grains imaged and manipulated by AFM, Surface Science 532–535, 483–487.

    Article  Google Scholar 

  13. Eng, L.M., (1999) Nanoscale Domain Engineering and Characteriation of Ferroelectric Domains, Nanotechnology 10, 405–411.

    Article  ADS  Google Scholar 

  14. Eng, L.M., Rosenman, G., Skliar, A., Oron, M., Katz, M., and Eger, D. (1998) Nondestructive imaging and characterization of ferroelectric domains in periodically poled crystals, J. Appl. Phys. 83, 5973–5977.

    Article  ADS  Google Scholar 

  15. Eng, L.M., Abplanalp, M., Günter, P., and Güntherodt, H.-J. (1998) Nanoscale Domain Switching and 3-Dimensional Mapping of Ferroelectric Domains by Scanning Force Microscopy, J. de Physique IV 8,Pr9:201–204.

    Google Scholar 

  16. Eng, L.M., Abplanalp, M., and Günter, P. (1998) Ferroelectric Domain Switching in Tri-Gylcine Sulphate and Barium-Titanate Bulk Single Crystals by Scanning Force Microscopy, Appl. Phys. A 66, S679–S683.

    ADS  Google Scholar 

  17. Abplanalp, M., Eng, L.M., and Günter, P. (1998) Mapping the Domain Distribution at Ferroelectric Surfaces by Scanning Force Microscopy, Appl. Phys. A 66, S231–S234.

    ADS  Google Scholar 

  18. Tarrach, G., Lagos, P.L., Hermans, R.Z., Loppacher, Ch., Schlaphof, F., and Eng, L.M. (2001) High-resolution spot allocation for Raman spectroscopy on ferroelectrics by polarization and piezoresponse force microscopy, Appl. Phys. Lett. 79, 3152–3154.

    Article  ADS  Google Scholar 

  19. Eng, L.M., Güntherodt, H.-J., Schneider, G.A., Köpke, U., and Muñoz Saldaña, J. (1999) Nanoscale Reconstruction of Surface Crystallography from 3-Dimensional Polarization Distribution in Ferroelectric Barium-titanate Ceramics, Appl. Phys. Lett. 74, 233–235.

    Article  ADS  Google Scholar 

  20. Muñoz-Saldaña, J., Schneider, G.A., and Eng, L.M. (2001) Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy, Surf. Sci. 480, L402–L410.

    Article  Google Scholar 

  21. Munoz Saldana, J., Eng, L.M., and Schneider, G.A. (2000) MicroscopÍa de barrido de fuerzas piezoeléctricas (PFM), Sciencia UANL 3, 389–396.

    Google Scholar 

  22. Roelofs, A., Pertsev, N.A., Waser, R., Schlaphof, F., Eng, L.M., Ganpule, C., and Ramesh, R. (2002) Depolarizing-field-induced 180° switching in ferroelectric thin films with 90° domains, Appl. Phys. Lett. 80, 1424–1426.

    Article  ADS  Google Scholar 

  23. Roelofs, A., Schlaphof, F., Trogisch, S., Böttger, U., Waser, R., and Eng, L.M. (2000) Differentiating 180° and 90° domain switching with 3D — PFM, Appl. Phys. Lett. 77, 3444–3446.

    Article  ADS  Google Scholar 

  24. Ganpule, C.S., Nagarajan, V., Hill, B.K., Roytburd, A.L., Williams, E.D., Ramesh, R., Alpay, S.P., Roelofs, A., Waser, R., and Eng, L.M. (2002) Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films, J. Appl. Phys. 91, 1477–1481.

    Article  ADS  Google Scholar 

  25. Lu, X.M., Schlaphof, F., Loppacher, C., Grafström, S., Eng, L.M., Suchaneck, G., and Gerlach, G. (2002) SPM investigation of the Pb(Zr0.25Ti0.75)O3/Pt interface, Appl. Phys. Lett. 81, 3215–3217.

    Article  ADS  Google Scholar 

  26. Eng, L.M., Grafström, S., Loppacher, C., Lu, X.M., Schlaphof, F., Franke, K., Suchaneck, G., and Gerlach, G. (2004) Local dielectric and polarization properties of inner and outer interfaces in PZT thin films, Integrated Ferroelectrics, in press.

    Google Scholar 

  27. Eng, L.M., Schlaphof, F., Trogisch, S., Roelofs, A., and Waser, R. (2001) Status and Future Aspects in Nanoscale Surface Inspection of Ferroics by Scanning Probe Microscopy, Ferroelectrics 251, 11–18.

    Article  Google Scholar 

  28. Franke, K. (1995) Evaluation of electrically polar substances by electric scanning force microscopy. Part II: Measurement signals due to Electromechanical Effects, Ferroelec. Lett. 19, 35–43.

    Article  Google Scholar 

  29. Cao W. and Randall, C. (1993) Theory on the fringe patterns in the study of ferroelectric domain walls using electron holography, Solid State Comm. 86, 435–439.

    Article  ADS  Google Scholar 

  30. Franke, K., Hülz, H., Weihnacht, M., Hässler, W., and Besold, J. (1995) Nanoscale investigation of polarization in thin ferroelectric films by means of scanning force microscopy, Ferroelectrics 172, 397.

    Article  Google Scholar 

  31. Franke, K., Huelz, H., and Seifert, S., (1997) Poling behaviour at the grain boundaries of ferroelectric PZT thin films investigated by electric scanning force microscopy, Ferroelec. Lett. 23, 1–6.

    Article  Google Scholar 

  32. Guggisberg, M., Bammerlin, M., Loppacher, Ch., Pfeiffer, O., Abdurixit, A., Barvich, V., Bennewitz, R., Baratoff, A., Meyer, E., and Güntherodt, H.-J. (2000) Separation of interactions by noncontact force microscopy, Phys. Rev. B 61, 11151–11155.

    ADS  Google Scholar 

  33. Guggisberg, M., Pfeiffer, O., Schär, S., Barvich, V., Bammerlin, M., Loppacher, Ch., Bennewitz, R., Baratoff, A., and Meyer, E. (2000) Contrast inversion in nc-AFM on Si(111)727 due to short-range electrostatic interactions, Appl. Phys. A 72, S19–S22.

    ADS  Google Scholar 

  34. Eng, L.M., Grafström, S., Loppacher, Ch., Schlaphof, F., Trogisch, S., Roelofs, A., and Waser, R. (2001) 3-dimensional Electric Field Distribution Above and Below Dielectric (Ferroelectric) Surfaces: Nanoscale Measurements and Manipulation with Scanning Probe Microscopy, in B. Kramer (ed.) Advances in Solid State Physics, 41, Springer, Berlin, pp. 287–298.

    Chapter  Google Scholar 

  35. Suchaneck, G., Lin, W.-M., Koehler, R., Sandner, T., Gerlach, G., Krawietz, R., Pompe, W., Deineka, A., and Jastrabik, L. (2002) Characterization of RF-Sputtered self-polarized PZT thin films for IR sensor arrays, Vacuum 66, 473–478.

    Article  Google Scholar 

  36. Köhler, R., Suchaneck, G., Padmini, P., Sandner, T., Gerlach, G., and Hoffmann, G. (1999) RF-sputtered PZT thin films for infrared sensor arrays, Ferroelectrics 225, 57–66.

    Article  Google Scholar 

  37. Bruchhaus, R., Huber, H., Pitzer, D., and Wersing, W. (1992) Sputtered PZT Films for Ferroelectric Devices, Ferroelectrics 127, 137–144.

    Google Scholar 

  38. Kalinin, S.V. and Bonnell, D.A. (2001) Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63, 125411–125423.

    ADS  Google Scholar 

  39. Jacobs, H.O., Leuchtmann, P., Homan, O.J., and Stemmer, A. (1998) Resolution and contrast in Kelvin probe force microscopy, J. Appl. Phys. 84, 1168–1173.

    Article  ADS  Google Scholar 

  40. Tagantsev, A.K. and Stolichnov, I.A. (1999) Injection-controlled size effect on switching of ferroelectric thin films, Appl. Phys. Lett. 74, 1326–1328.

    Article  ADS  Google Scholar 

  41. Iijima, K., Nagano, N., Takeuchi, T., Ueda, I., Tomita, Y., Takayama, R. (1993) Sputtering of lead-based ferroelectrics, Mater. Res. Symp. Proc. 310, 455–465.

    Google Scholar 

  42. Suchaneck, G., Gerlach, G., Poplavko, Yu., Kosarev, A.I., and Andronov, A.N. (2001) Self-polarization of the textured PZT films forced by electrode-PZT interaction, Mat. Res. Soc. Symp. Proc. 655, C.C.7.7.1–C.C.7.7.6.

    Google Scholar 

  43. Scott, J.F. (1999) Device Physics of Ferroelectric Thin-Film Memories, Jpn. J. Appl. Phys., 38, Part 1, 2272–2274.

    Article  ADS  Google Scholar 

  44. Deneika, A., Glinchuk, M., Jastrabik, L., Suchaneck, G., and Gerlach, G. (1999) Influence of surface and interface on PZT films optical properties, Phys, Stat. Solidi A 175, 443–446.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Eng, L. (2005). Nanoinspection of Dielectric and Polarization Properties at Inner and Outer Interfaces in Functional Ferroelectric PZT Thin Films. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_12

Download citation

Publish with us

Policies and ethics