Skip to main content

Scanning Tunneling Spectroscopy

Local density of states and spin distribution of interacting electron systems

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

Abstract

Scanning tunneling spectroscopy (STS) and its extension, the spin-polarized scanning tunneling spectroscopy (SPSTS), reveal basic information on the spatial distribution of electron systems. STS measures the local density of states given by the sum over squared single-particle wave functions at a chosen energy, while SPSTS detects the spatial distribution of the spin at the same energy. The application of these techniques on electron systems, which are not spatially uniform, is of particular interest. Here, we discuss two examples. First, the paradigmatic electron system located in the quasiparabolic conduction band of InAs is investigated and different types of electron phases are identified depending on the dimension of the system and the applied magnetic field. Second, the spin-polarized technique is used to determine the domain configuration of ferromagnetic particles at different heights.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiesendanger, R. (1994) Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, Cambridge, England.

    Book  Google Scholar 

  2. Pan, S.H., Hudson, E.W. and Davis, J.C. (1998) Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips, Appl. Phys. Lett. 73, 2992–2994.

    Article  ADS  Google Scholar 

  3. Bode, M., Getzlaff, M. and Wiesendanger, R. (1998), Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001), Phys. Rev. Lett. 81, 4256–4259.

    Article  ADS  Google Scholar 

  4. Heinze, S., Bode, M., Kubetzka, A., Pietzsch, O., Xie, X., Blügel, S. and Wiesendanger, R. (2000) Real-Space Imaging of Two-Dimensional Antiferromagnetism on the Atomic Scale, Science 288, 1805–1808.

    Article  ADS  Google Scholar 

  5. Yazdani, A., Jones, B.A., Lutz, C.P., Crommie, M.F. and Eigler, D.M. (1997) Probing the Local Effects of Magnetic Impurities on Superconductivity, Science 275, 1767–1770.

    Article  Google Scholar 

  6. Pan, S.H., Hudson, E.W., Lang, K.M., Eisaki, H., Uchida, S. and Davis, J.C. (2000) Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+Δ, Nature 403, 746–750.

    Article  ADS  Google Scholar 

  7. Lang, K.M., Madhavan, V., Hoffman, J.E., Hudson, E.W., Eisaki, H., Uchida, S. and Davis, J.C. (2002) Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+Δ, Nature 415, 412–416.

    Article  ADS  Google Scholar 

  8. Hoffmann, J.E., Hudson, E.W., Lang, K.M., Madhavan, V., Eisaki, H., Uchida, S. and Davis, J.C. (2002) A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+Δ, Science 295, 466–469.

    Article  ADS  Google Scholar 

  9. Wu, X.L. and Lieber, C.M. (1989) Hexagonal Domain-Like Charge-Density Wave of TaS2 Determined by Scanning Tunneling Microscopy, Science 243, 1703–1705.

    Article  ADS  Google Scholar 

  10. Weitering, H.H., Carpinelli, J.M., Melechenko, A.V., Zhang, J., Bartkowiak, M. and Plummer, E.W. (1999) Defect-Mediated Condensation of a Charge Density Wave, Science 285, 2107–2110.

    Article  Google Scholar 

  11. Nishiguchi, T., Kageshima, M., Ara-Kato, N. and Kawazu, A. (1998) Behaviour of Charge Denisty Waves in a One-Dimensional Organic Conductor Visualized by Scanning Tunneling Microscopy, Phys. Rev. Lett. 81, 3187–3190.

    Article  ADS  Google Scholar 

  12. Li, J., Schneider, W.D., Berndt, R. and Delley, B. (1998) Kondo Scattering Observed at a Single Magnetic Impurity, Phys. Rev. Lett. 80, 2893–2896.

    Article  ADS  Google Scholar 

  13. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. and Wingreen, N.S. (1998) Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance, Science 280, 567–569.

    Article  ADS  Google Scholar 

  14. Manoharan, H.C., Lutz, C.P. and Eigler, D.M. (2000) Quantum mirages formed by coherent projection of electronic structure, Nature 403, 512–515.

    Article  ADS  Google Scholar 

  15. Ando, T., Fowler, A.B. and Stern, F. (1982) Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437–672.

    Article  ADS  Google Scholar 

  16. Lee, P.A. and Ramakrishnan, T.V. (1985) Disordered electron systems, Rev. Mod. Phys. 57, 287–337.

    Article  ADS  Google Scholar 

  17. Adams, E.N. and Holstein, T.D. (1959) Quantum Theory of Transverse Galvanomagnetic Phenomena, J. Phys. Chem. Solids 10, 254–276.

    Article  ADS  Google Scholar 

  18. Sarachik, M.P., Simonian, D., Kravchenko, S.V., Bogdanovich, S., Dobrosavljevic, V. and Kotliar, G. (1998) Metal-insulator transition in Si:X (X=P,B): Anomalous response to a magnetic field, Phys. Rev. B 58, 6692–6695.

    ADS  Google Scholar 

  19. von Klitzing, K., Dorda, G. and Pepper, M. (1980) New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494–497.

    Article  ADS  Google Scholar 

  20. Tsui, D.C., Störmer, H.L. and Gossard, A.C. (1982) Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1559–1562.

    Article  ADS  Google Scholar 

  21. Jiang, H.W., Willett, R.L., Störmer, H.L., Tsui, D.C., Pfeiffer, L.N. and West, K.W. (1990) Quantum liquid versus electron solid around v =1/5 Landau-level filling, Phys. Rev. Lett. 65, 633–636.

    Article  ADS  Google Scholar 

  22. Ausländer, O.M., Yacobi., A., de Piciotto, R., Baldwin, K.W., Pfeiffer, L.N. and West, K.W. (2002) Tunneling Spectroscopy of the Elementary Excitations in a One-Dimensional Wire, Science 295, 825–828.

    Article  ADS  Google Scholar 

  23. Smet, J.H., Deutschmann, R.A., Wegscheider, W., Abstreiter, G. and von Klitzing, K. (2001) Ising Ferromagnetism and Domain Morphology in the Fractional Quantum Hall Regime, Phys. Rev. Lett. 86, 2412–2415.

    Article  ADS  Google Scholar 

  24. Scarola, V.W., Park, K. and Jain, J.K. (2000) Cooper instability of composite fermions, Nature 406, 863–865.

    Article  ADS  Google Scholar 

  25. Beenakker, C.W.J. and van Houten, H. (1991) Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1–228.

    Article  Google Scholar 

  26. Joynt, R. and Prange, R.E. (1984) Conditions for the quantum Hall effect, Phys. Rev. B 29, 3303–3317.

    ADS  Google Scholar 

  27. MacDonald, A.H. and Fisher, M.P.A. (2000) Quantum theory of quantum Hall smectics, Phys. Rev. B 61, 5724–5733.

    ADS  Google Scholar 

  28. Kramer, B. and MacKinnon, A. (1993) Localization: theory and experiment, Rep. Prog. Phys. 56, 1469–1564.

    Article  ADS  Google Scholar 

  29. Zhitenev, N.B., Fulton, T.A., Yacoby, A., Hess, H.F., Pfeiffer, L.N. and West, K.W. (2000) Imaging of localized electronic states in the quantum Hall regime, Nature 404, 473–476.

    Article  ADS  Google Scholar 

  30. Finkelstein, G., Glicofridis, P.I., Ashoori, R.C. and Shayegan, M. (2000) Topographic mapping of the quantum Hall liquid using a few-electron bubble, Science 289, 90–94.

    Article  ADS  Google Scholar 

  31. Kanisawa, K., Butcher, M.J., Yamaguchi, H. and Hirayama, Y. (2001) Imaging of Friedel Oscillation Patterns of Two-Dimensionally Accumulated Electrons at Epitaxially Grown InAs(111)A Surfaces, Phys. Rev. Lett. 86, 3384–3387.

    Article  ADS  Google Scholar 

  32. Dombrowski, R., Steinebach, C., Wittneven, C., Morgenstern, M. and Wiesendanger, R. (1999) Determining the tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110), Phys. Rev. B 59, 8043–8048.

    ADS  Google Scholar 

  33. Morgenstern, M., Gudmundsson, V., Wittneven, C., Dombrowski, R. and Wiesendanger, R. (2001) Nonlocality of the exchange interaction probed by scanning tunneling spectroscopy, Phys. Rev. B 63, 201301(R), 1–4.

    ADS  Google Scholar 

  34. Morgenstern, M., Wittneven, C., Dombrowski, R. and Wiesendanger, R. (2000) Spatial Fluctuations of the Density of States in Magnetic Fields Observed with Scanning Tunneling Spectroscopy, Phys. Rev. Lett. 84, 5588–5591.

    Article  ADS  Google Scholar 

  35. Meyer, C., Klijn, J., Morgenstern, M. and Wiesendanger, R. (2003) Direct measurement of the local density of states of a disordered one-dimensional conductor, Phys. Rev. Lett., in press.

    Google Scholar 

  36. Morgenstern, M., Klijn, J., Meyer, C., Getzlaff, M., Adelung, R., Römer, R. A., Rossnagel, K., Kipp, L., Skibowski, M. and Wiesendanger, R. (2002) Direct Comparison between Potential Landscape and Local Density of States in a Disordered Two-Dimensional Electron System, Phys. Rev. Lett. 89, 136806, 1–4.

    Article  ADS  Google Scholar 

  37. Morgenstern, M., Klijn, J., Meyer, C. and Wiesendanger, R. (2003) Real-Space Observation of Drift States in a Two-Dimensional Electron System at High Magnetic Fields, Phys. Rev. Lett. 90, 056804, 1–4.

    Article  ADS  Google Scholar 

  38. Wittneven, C., Dombrowski, R., Morgenstern, M. and Wiesendanger, R. (1998) Scattering States of Ionized Dopants Probed by Low Temperature Scanning Tunneling Spectroscopy, Phys. Rev. Lett. 81, 5616–5619.

    Article  ADS  Google Scholar 

  39. Haude, D., Morgenstern, M., Meinel, I. and Wiesendanger, R. (2001), Local Density of States of a Three-Dimensional Conductor in the Extreme Quantum Limit, Phys. Rev. Lett. 86, 1582–1585.

    Article  ADS  Google Scholar 

  40. Pietzsch, O., Kubetzka., A., Bode, M. and Wiesendanger, R. (2001) Observation of Magnetic Hysteresis at the Nanometer Scale by Spin-Polarized Scanning Tunneling Spectroscopy, Science 292, 2053–2056.

    Article  ADS  Google Scholar 

  41. Wachowiak, A., Wiebe, J., Bode., M., Pietzsch, O., Morgenstern, M. and Wiesendanger, R. (2002) Internal Spin-Structure of Magnetic Vortex Cores Observed by Spin-Polarized Scanning Tunneling Microscopy, Science 298, 577–580.

    Article  ADS  Google Scholar 

  42. Stipe, B.C., Rezaei, M.A., and Ho, W. (1998) Single-Molecule Vibrational Spectroscopy and Microscopy, Science 280, 1732–1735.

    Article  ADS  Google Scholar 

  43. Bardeen, J. (1961) Tunneling from a Many-Particle Point of View, Phys. Rev. Lett. 6, 57–59.

    Article  ADS  Google Scholar 

  44. Tersoff, J. and Hamann, D. R. (1983) Theory and Application for the Scanning Tunneling Microscope, Phys. Rev. Lett. 50, 1998–2001.

    Article  ADS  Google Scholar 

  45. Tersoff, J. and Hamann, D.R. (1985) Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805–813.

    ADS  Google Scholar 

  46. Morgenstern, M. Haude, D., Gudmundsson, V., Wittneven, C., Dombrowski, R., Steinebach, C. and Wiesendanger, R. (2000) Low temperature scanning tunneling spectroscpy on InAs(110), J. Electr. Spectr. Rel. Phen. 109, 127–145.

    Article  Google Scholar 

  47. Olesen, L., Brandbyge, M., Sorensen, M.R., Jacobsen, K.W., Laegsgaard, E., Stensgaard, I. and Besenbacher, F. (1996) Apparent Barrier Height in Scanning Tunneling Microscopy Revisited, Phys. Rev. Lett. 76, 1485–1488.

    Article  ADS  Google Scholar 

  48. Weimer, M., Kramar, J. and Baldeschwieler, J.D. (1989) Band bending and the apparent barrier height in scanning tunneling microscopy, Phys. Rev. B 39, 5572–5575.

    ADS  Google Scholar 

  49. Hofer, W.A., Redinger, J., Biedermann, A. and Varga, P. (2000) Limits of perturbation theory: first principles simulations of scanning tunneling microscopy scans on Fe(001), Surf. Sci. 466, L795–801.

    Article  Google Scholar 

  50. Chen, C.J. (1993) Introduction to Scanning Tunneling Microscopy, Oxford University Press, Oxford.

    Google Scholar 

  51. Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., and Blügel, S. (2001) Resolving Complex Atomic-Scale Spin Structures by Spin-Polarized Scanning Tunneling Microscopy, Phys. Rev. Lett. 86, 4132–4135.

    Article  ADS  Google Scholar 

  52. Wittneven, C., Dombrowski, R., Pan, S.H. and Wiesendanger, R. (1997) A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field, Rev. Sci. Instr. 68, 3806–3810.

    Article  ADS  Google Scholar 

  53. Morgenstern, M., Getzlaff, M., Haude, D., Wiesendanger, R. and Johnson, R.L. (2000) Coverage dependence of the Fe-induced Fermi-level shift and the two-dimensional electron gas on InAs(110), Phys. Rev. B 61, 13805–13812.

    ADS  Google Scholar 

  54. Pietzsch, O., Kubetzka, A., Haude, D., Bode, M. and Wiesendanger, R. (2000) A LT UHV STM with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism, Rev. Sci. Instr. 71, 424–430.

    Article  ADS  Google Scholar 

  55. Gradmann, U., Liu, G., Elmers, H.J. and Przybylski, M. (1990) The ferromagnetic monolayer Fe(110) on W(110), Hyperf. Int. 57, 1845–1852.

    Article  ADS  Google Scholar 

  56. Kubetzka A., Bode, M., Pietzsch, O. and Wiesendanger, R. (2002) Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips, Phys. Rev. Lett. 88, 057201, 1–4.

    Article  ADS  Google Scholar 

  57. Alves, J.J., Hebenstreit, J. and Scheffler, M. (1991) Calculated atomic structures and electronic properties of GaP, InP, GaAs, and InAs (110) surfaces, Phys. Rev. B 44, 6188–6198.

    ADS  Google Scholar 

  58. Klijn, J., Sacharow, L., Meyer, C., Blügel, S., Morgenstern, M. and Wiesendanger, R. (2003) STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations, Phys. Rev. B, submitted.

    Google Scholar 

  59. Abrahams, E., Anderson, P.W., Licciardello, D.C. and Ramakrishnan, T.V. (1979) Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42, 673–676.

    Article  ADS  Google Scholar 

  60. Voit, J. (1994) One-dimensional Fermi liquids, Rep. Prog. Phys. 57, 977–1116.

    Google Scholar 

  61. Morgenstern, M., Haude, D., Gudmundsson, V., Wittneven, C., Dombrowski, R. and Wiesendanger, R. (2000) Origin of Landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110), Phys. Rev. B 62, 7257–7263.

    ADS  Google Scholar 

  62. Morgenstern, M., Haude, D., Meyer, C. and Wiesendanger, R. (2001) Experimental evidence for edge-like states in three-dimensional electron systems, Phys. Rev. B 64, 205104, 1–11.

    ADS  Google Scholar 

  63. Prange, R.E. and Girvin, S.M. (1990) The Quantum Hall Effect, Springer Verlag, New York.

    Google Scholar 

  64. Ando, T. (1984) Electron localization in a two-dimensional system in strong magnetic fields: II. Long-range scatterers and response functions, J. Phys. Soc. Jpn. 53, 3101–3111.

    Article  ADS  Google Scholar 

  65. Murzin, S.S. (2000) Electron transport in the extreme quantum limit in applied magnetic field, Phys. Uspekhi 43, 349–364.

    Article  ADS  Google Scholar 

  66. Shlovskii, B.I. and Efros, A.L. (1984) Electronic Properties of Doped Semiconductors, Springer, New York.

    Google Scholar 

  67. Morgenstern, M., Haude, D., Klijn, J. and Wiesendanger, R. (2002) Coulomb pseudogap caused by partial localization of a three-dimensional electron system in the extreme quantum limit, Phys. Rev. B 66, 121102(R), 1–4.

    ADS  Google Scholar 

  68. Wiesendanger, R., Bode, M. and Getzlaff, M. (1999) Vacuum-tunneling magnetoresistance: the role of spin-polarized surface states, Appl. Phys. Lett. 75, 124–126.

    Article  ADS  Google Scholar 

  69. Prinz, G.A. (1998) Magnetoelectronics, Science 282, 1660–1663.

    Article  Google Scholar 

  70. Datta, S. and Das, B. (1989) Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56, 665–667.

    Article  ADS  Google Scholar 

  71. Hubert, A. and Schäfer, R. (1998) Magnetic Domains, Springer, Berlin.

    Google Scholar 

  72. Elmers, H. J., Furubayashi, T., Albrecht, M. and Gradmann, U. (1991) Analysis of magnetic anisotropies in ultrathin films by magnetometry in situ in UHV, J. Appl. Phys. 70, 5764–5768.

    Article  ADS  Google Scholar 

  73. Hertel, T. (2002) Thickness dependence of magnetization structures in thin permalloy rectangles, Z. Metallkd. 93, 957–963.

    Google Scholar 

  74. Feldtkeller, E. and Thomas, H. (1965) Struktur und Energie von Blochlinien in dünnen magnetischen Schichten, Phys. Kondens. Mater. 4, 8–14.

    Article  ADS  Google Scholar 

  75. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. and Ono, T. (2000) Magnetic vortex core observation in circular dots of permalloy, Science 289, 930–932.

    Article  ADS  Google Scholar 

  76. OOMMF: Object Oriented Micromagnetic Framework, Version 1.2 alpha 2, (http/math.nist.gov/oommf/)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Morgenstern, M. (2005). Scanning Tunneling Spectroscopy. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_11

Download citation

Publish with us

Policies and ethics