Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarid, D. (1991) Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Oxford Series in Optical and Imaging Sciences, University Press, Oxford.

    Google Scholar 

  2. Wiesendanger, R. (1994) Scanning Probe Microscopy and Spectroscopy: Methods and Applications University Press, Cambridge.

    Book  Google Scholar 

  3. Bonnell, D.A. (2000) Scanning Probe Microscopy and Spectroscopy: Theory Techniques, and Applications, John Wiley & Sons.

    Google Scholar 

  4. Tsukruk, V. (2001) Advances in Scanning Probe Microscopy (Macromolecular Symposia 167) John Wiley & Sons.

    Google Scholar 

  5. De Stefanis, A. and Tomlinson, A.A.G. (2001) Scanning Probe Microscopies: From Surfaces Structure to Nano-Scale Engineering, Trans Tech Publications, Ltd.

    Google Scholar 

  6. Martin, Y., Williams, C.C., and Wickramasinghe, H.K. (1987) Atomic Force Microscope — Force Mapping and Profiling on a sub 100A Scale, J. Appl. Phys. 61, 4723–4727.

    Article  ADS  Google Scholar 

  7. Stern, J.E., Terris, B.D., Mamin, H.J., and Rugar, D. (1988) Deposition and Imaging of Localized Charge on Insulator Surfaces Using a Force Microscope, Appl. Phys. Lett. 53, 2717–2719.

    Article  ADS  Google Scholar 

  8. Martin, Y., Abraham, D.W., and Wickramasinghe, H.K. (1988) High-Resolution Capacitance Measurement and Potentiometry by Force Microscopy, Appl. Phys. Lett. 52, 1103–1105.

    Article  ADS  Google Scholar 

  9. Nonnenmacher, M., O'Boyle, M.P., and Wickramasinghe, H.K. (1991) Kelvin Probe Force Microscopy, Appl. Phys. Lett. 58, 2921–2923.

    Article  ADS  Google Scholar 

  10. Barrett, R.C. and Quate, C.F. (1991) Charge Storage in a Nitride-Oxide-Silicon Medium by Scanning Capacitance Microscopy, J. Appl. Phys. 70, 2725–2729.

    Article  ADS  Google Scholar 

  11. Saurenbach, F. and. Terris, B.D. (1990) Imaging of Ferroelectric Domain Walls by Force Microscopy, Appl. Phys. Lett. 56, 1703–1705.

    Article  ADS  Google Scholar 

  12. Luthi, R., Haefke, H., Meyer, K.-P., Meyer, E., Howald, L., and Guntherodt, H.-J. (1993) Surface and Domain Structures of Ferroelectric Crystals Studied with Scanning Force Microscopy, J. Appl. Phys. 74, 7461–7471.

    Article  ADS  Google Scholar 

  13. Lehnen, P., Dec, J., and Kleemann, W. (2000) Ferroelectric Domain Structures of PbTiO3 Studied by Scanning Force Microscopy, J. Phys. D: Appl. Phys. 33, 1932–1936.

    Article  ADS  Google Scholar 

  14. Luthi, R., Haefke, H., Meyer, K.-P., Meyer, E., Howald, L., and Guntherodt, H.-J. (1993) Surface and Domain Structures of Ferroelectric GASH Crystals Studied by Scanning Force Microscopy, Surf. Sci. 285, L498.

    Article  Google Scholar 

  15. Luthi, R., Haefke, H., Gutmannsbauer, W., Meyer, E., Howald, L., and Guntherodt, H.-J. (1994) Statics and Dynamics of Ferroelectric Domains studied with Scanning Force Microscopy, J. Vac. Sci. Technol. B 12, 2451–2456.

    Google Scholar 

  16. Luthi, R., Meyer, E., Howald, L., Haefke, H., Anselmetti, D., Dreier, M., Ruetschi, M., Bonner, T., Overney, R.M., Frommer, J., and Guntherodt, H.-J. (1994) Progress in Noncontract Dynamic Force Microscopy, J. Vac. Sci. Technol. B 12, 1673–1676.

    Google Scholar 

  17. Eng, L.M., Friedrich, M., Fousek, J., and Gunter, P. (1996) Deconvolution of Topographic and Ferroelectric Contrast by Noncontact and Friction Force Microscopy, J. Vac. Sci. Technol. B 14, 1191–1196.

    Google Scholar 

  18. Eng, L.M., Fousek, J., and Gunter, P. (1997) Ferroelectric Domains and Domain Boundaries Observed by Scanning Force Microscopy, Ferroelectrics 191, 419–426.

    Article  Google Scholar 

  19. Eng, L.M., Bammerlin, M., Loppacher, C., Guggisberg M., Bennewitz R., Meyer E., and Guntherodt H.J. (1999) Ferroelectric Domains and Material Contrast Down to a 5 nm Lateral Resolution on Uniaxial Ferroelectric Triglycine Sulphate Crystals, Surf. Interface Anal. 27, 422–425.

    Article  Google Scholar 

  20. Terris, B.D., Stern, J.E., Rugar, D., and Mamin, H.J. (1989) Contact Electrification Using Force Microscopy, Phys. Rev. Lett. 63, 2669–2672.

    Article  ADS  Google Scholar 

  21. Terris, B.D., Stern, J. E., Rugar, D., and Mamin, H.J. (1990) Localized Charge Force Microscopy, J. Vac. Sci. Technol. A 8, 374–377.

    ADS  Google Scholar 

  22. Blinov, L.M., Barberi, R., Palto, S.P., De Santo M.P., and Yudin S.G. (2001) Switching of a Ferroelectric Polymer Langmuir-Blodgett Film Studied by Electrostatic Force Microscopy J. Appl. Phys. 89, 3960–3975.

    Article  ADS  Google Scholar 

  23. Luo, E.Z., Xie, Z., Xu, J.B., Wilson I.H., and Zhao L.H. (2000) In Situ Observation of the Ferroelectric-Paraelectric Phase Transition in a Triglycine Sulfate Single Crystal by Variable-Temperature Electrostatic Force Microscopy, Phys. Rev. B 61, 203–208.

    ADS  Google Scholar 

  24. Hong, J.W., Park, S.-I., and Khim, Z.G. (1999) Measurement of Hardness, Surface Potential, and Charge Distribution With Dynamic Contact Mode Electrostatic Force Microscope, Rev. Sci. Instrum. 70, 1735–1739.

    Article  ADS  Google Scholar 

  25. Eng, L.M., Bammerlin, M., Loppacher, C., Guggisberg M., Bennewitz R., Luthi R., Meyer E., and Guntherodt H.J. (1999) Surface Morphology, Chemical Contrast, and Ferroelectric Domains in TGS Bulk Single Crystals Differentiated With UHV Non-Contact Force Microscopy, Appl. Surf. Sci. 140, 253–258.

    Article  ADS  Google Scholar 

  26. Tsunekawa, S., Ichikawa, J., Nagata, H., and Fukuda T. (1999) Observation of Ferroelectric Microdomains in LiNbO3 Crystals by Electrostatic Force Microscopy, Appl. Surf. Sci. 137, 61–70.

    Article  ADS  Google Scholar 

  27. Hong, J.W., Kahng, D.S., Shin, J.C., Kim H.J., and Khim Z.G. (1998) Detection and Control of Ferroelectric Domains by an Electrostatic Force Microscope, J. Vac. Sci. Technol. B 16, 2942–2946.

    Google Scholar 

  28. Hong, J.W., Noh, K.H., Park, S., Kwun S.I., and Khim Z.G. (1998) Surface Charge Density and Evolution of Domain Structure in Triglycine Sulfate Determined by Electrostatic Force Microscopy, Phys. Rev. B 58, 5078–5083.

    ADS  Google Scholar 

  29. Bluhm, H., Wadas, A., Wiesendanger, R., Roshko, A., Aust, J.A., and Nam, D. (1997) Imaging of Domain-Inverted Gratings in LiNbO3 by Electrostatic Force Microscopy, Appl. Phys. Lett. 71, 146–148.

    Article  ADS  Google Scholar 

  30. Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley M.R., Fischer O., and Triscone J.M. (1997) Local, Nonvolatile Electronic Writing of Epitaxial Pb(Zr,Ti)O3/SrRuO3 Heterostructures, Science 276, 1100–1104.

    Article  Google Scholar 

  31. Zavala, G., Fendler, J.H., and Trolier-McKinstry, S. (1997) Characterization of Ferroelectric Lead Zirconate Titanate Films by Scanning Force Microscopy, J. Appl. Phys. 81, 7480–7491.

    Article  ADS  Google Scholar 

  32. Kalinin S.V. and Bonnell, D.A. (2001) Local Potential and Polarization Screening On Ferroelectric Surfaces, Phys. Rev. B 63, 125411–125424.

    ADS  Google Scholar 

  33. Kalinin, S.V., Johnson, C.Y., and Bonnell, D.A. (2002) Domain Polarity and Temperature Induced Potential Inversion on the BaTiO3(100) Surface, J. Appl Phys. 91, 3816–3823.

    Article  ADS  Google Scholar 

  34. Kalinin, S.V. and Bonnell, D.A. (2001) Temperature Dependence of Polarization and Charge Dynamics on the BaTiO3 (100) Surface by Scanning Probe Microscopy, Appl. Phys. Lett. 78, 1116–1118.

    Article  ADS  Google Scholar 

  35. Shikler, R., Fried, N., Meoded, T., and Rosenwaks, Y. (2000) Measuring Minority-Carrier Diffusion Length Using a Kelvin Probe Force Microscope, Phys. Rev. B 61, 11041–11046; Shikler, R., Meoded, T., Fried, N., and Rosenwaks, Y. (1999) Potential Imaging of Operating Light-Emitting Devices Using Kelvin Force Microscopy, Appl. Phys. Lett. 74, 2972–2974.

    ADS  Google Scholar 

  36. Gruverman, A., Auciello, O., and Tokumoto, H. (1996) Scanning Force Microscopy for the Study of Domain Structure in Ferroelectric Thin Films, J. Vac. Sci. Technol. B 14, 602–605.

    Google Scholar 

  37. Correia, A., Massanell, J., Garcia, N., Levanyuk, A.P., Zlatkin, A., and Przeslawski, J. (1996) Friction Force Microscopy Study of a Cleaved Ferroelectric Surface: Time and Temperature Dependence of the Contrast, Evidence of Domain Structure Branching, Appl. Phys. Lett. 68, 2796–2798.

    Article  ADS  Google Scholar 

  38. Bluhm, H., Schwarz, U.D., and Wiesendanger, R. (1998) Origin of the Ferroelectric Domain Contrast Observed in Lateral Force Microscopy, Phys. Rev. B 57, 161–165.

    ADS  Google Scholar 

  39. Bluhm, H., Wiesendanger, R., and Meyer, K.-P. (1996) Surface Structure of Ferroelectric Domains on the Triglycine Sulfate (010) Surface, J. Vac. Sci. Technol. B 14, 1180–1183.

    Google Scholar 

  40. Bluhm, H., Schwarz, U.D., Meyer, K.-P., and Wiesendanger, R. (1995) Anisotropy Sliding Friction on the Triglycine Sulfate (010) Surface, Appl. Phys. A — Mater. 61, 525–528.

    Article  ADS  Google Scholar 

  41. Nakatani, N. (1979) Microscopic Structure of Cleavage Surface of Ferroelectric Triglycine Sulfate, Jpn. J. Appl. Phys. 18, 491–500.

    Article  ADS  Google Scholar 

  42. Shur, V.Ya., Gruverman, A.L., Ponomarev, N.Yu., and Tonkachyova, N.A. (1992) Change of Domain Structure of Lead Germanate in Strong Electric Fileds, Ferroelectrics 126, 371–376.

    Google Scholar 

  43. Shur, V.Ya., Subbotin, A.L., and Kuminov, V.P. (1993) Investigation of Domain Structure in Lead Germanate by Cleavage Method, Ferroelectrics 140, 101.

    Google Scholar 

  44. Jona, F. and Shirane, G. (1962) Ferroelectric Crystals, Pergamon Press, Oxford.

    Google Scholar 

  45. Seifert, A., Lange, F.F., and Speck, J.S. (1995) Epitaxial Growth of PbTiO3 Thin Films on (001) SrTiO3 From Solution Precursors, J. Mat. Res. 10, 680–681.

    Article  ADS  Google Scholar 

  46. Munoz-Saldana, J., Schneider, G.A., and Eng, L.M. (2001) Stress Induced Movement of Ferroelastic Domain Walls in BaTiO3 Single Crystals Evaluated by Scanning Force Microscopy, Surf. Sci. 480, L402–L410.

    Article  Google Scholar 

  47. Eng, L.M. and Guntherodt, H.-J. (2000) Scanning Force Microscopy and Near-Field Scanning Optical Microscopy of Ferroelectric and Ferroelastic Domain Walls, Ferroelectrics 236, 35.

    Article  Google Scholar 

  48. Takashige, M., Hamazaki, S., Takahashi, Y., and Shimizu F. (2000) Temperature Dependent Surface Images of Barium Titanate and Rochelle Salt Observed by Atomic Force Microscopy, Ferroelectrics 240, 1359–1366.

    Article  Google Scholar 

  49. Gruverman, A., Auciello, O., and Tokumoto, H. (1998) Scanning Force Microscopy: Application to Nanoscale Studies of Ferroelectric Domains, Integr. Ferroelectr. 19, 49–59.

    Article  Google Scholar 

  50. Wang, Y.G., Dec, J., and Kleemann, W. (1998) Study on Surface and Domain Structures of PbTiO3 Crystals by Atomic Force Microscopy, J. Appl. Phys. 84, 6795–6799.

    Article  ADS  Google Scholar 

  51. Ganpule, C.S., Nagarajan, V., Hill, B.K., Roytburd, A.L., Williams, E.D., Ramesh, R., Alpay, S.P., Roelofs, A., Waser, R., and Eng, L.M. (2002) Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films, J. Appl. Phys. 91, 1477–1481.

    Article  ADS  Google Scholar 

  52. Gruverman, A., Hatano J., and Tokumoto, H. (1997) Scanning Force Microscopy Studies of Domain Structure in BaTiO3 Single Crystals, Jpn. J. Appl. Phys. 36, Part 1, 2207–2210.

    Article  ADS  Google Scholar 

  53. Eng, L.M., Bammerlin, M., Loppacher, C., Guggisberg M., Bennewitz R., Luthi R., Meyer E., Huser T., Heinzelmann H., and Guntherodt H.J. (1999) Ferroelectric Domain Characterization and Manipulation: a Challenge for Scanning Probe Microscopy, Ferroelectrics 222, 411–420.

    Article  Google Scholar 

  54. Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Fejer, M.M., and Byer, R.L. (2000) Nanoscale Backswitched Domain Patterning in Lithium Niobate, Appl. Phys. Lett. 76, 143–145.

    Article  ADS  Google Scholar 

  55. Pompe, W., Gong, X., Suo, Z., and Speck, J.S. (1993) Elastic Energy Release Due to Domain Formation in the Strained Epitaxy of Ferroelectric and Ferroelastic Films, J. Appl. Phys. 74, 6012–6019.

    Article  ADS  Google Scholar 

  56. Kwak, B.S., Erbil, A., Budai, J.D., Chisholm, M.F., Boatner, L.A., and Wilkens, B.J. (1994) Domain Formation and Strain Relaxation in Epitaxial Ferroelectric Heterostructures, Phys. Rev. B 49, 14865.

    ADS  Google Scholar 

  57. Streiffer, S.K., Parker, C.B., Romanov, A.E., Lefevre M.J., Zhao L., Speck J.S., Pompe W., Foster C.M. and Bai G.R. (1998) Domain Patterns in Epitaxial Rhombohedral Ferroelectric Films. I. Geometry and Experiments, J. Appl. Phys. 83, 2742–2753.

    Article  ADS  Google Scholar 

  58. Pertsev, N.A., Zembilgotov, A.G., and Tagantsev, A.K., (1998) Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films, Phys. Rev. Lett. 80, 1988–1991.

    Article  ADS  Google Scholar 

  59. Koukhar, V.G., Pertsev, N.A., and Waser, R. (2001) Thermodynamic Theory of Epitaxial Ferroelectric Thin Films with Dense Domain Structures, Phys. Rev. B 64, 214103.

    ADS  Google Scholar 

  60. Wang, Y.G., Kleemann, W., Woike, T., and Pankrath, R. (2000) Atomic Force Microscopy of Domains and Volume Holograms in Sr0.61Ba0.39Nb2O6:Ce, Phys. Rev. B 61, 3333–3336.

    ADS  Google Scholar 

  61. Cho, Y., Kirihara A., and Saeki, T. (1997) Observation of Ferroelectric Polarization in the Noncontact Mode of a Scanning Nonlinear Dielectric Microscope, Jpn. J. Appl. Phys. 36, Part 1, 360–364.

    Article  ADS  Google Scholar 

  62. Cho, Y., Kazuta, S., and Matsuura, K. (1999) Scanning Nonlinear Dielectric Microscopy with Nanometer Resolution, Appl. Phys. Lett. 75, 2833–2835.

    Article  ADS  Google Scholar 

  63. Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K., and Kitamura, K. (2002) Tbit/inch2 Ferroelectric Data Storage Based on Scanning Nonlinear Dielectric Microscopy, Appl. Phys. Lett. 81, 4401–4403.

    Article  ADS  Google Scholar 

  64. Odagawa, H. and Cho, Y. (2002) Measuring Ferroelectric Polarization Component Parallel to the Surface by Scanning Nonlinear Dielectric Microscopy, Appl. Phys. Lett. 80, 2159–2161.

    Article  ADS  Google Scholar 

  65. Cho, Y. and Ohara, K. (2001) Higher-Order Nonlinear Dielectric Microscopy, Appl. Phys. Lett. 79, 3842–3844.

    Article  ADS  Google Scholar 

  66. Gao, C., Duewer, F., Lu, Y., and Xiang, X.-D. (1998) Quantitative Nonlinear Dielectric Microscopy of Periodically Polarized Ferroelectric Domains Appl. Phys. Lett. 73, 1146–1148.

    Article  ADS  Google Scholar 

  67. Lu, Y., Wei, T., Duewer, F., Lu, Y., Ming, N.-B., Schultz, P.G., and Xiang, X.-D. (1997) Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-Tip Microwave Near-Field Microscope, Science 276, 2004–2008.

    Article  Google Scholar 

  68. Steinhauer D.E. and Anlage, S.M. (2001) Microwave Frequency Ferroelectric Domain Imaging of Deuterated Triglycine Sulfate Crystals, J. Appl. Phys. 89, 2314–2321.

    Article  ADS  Google Scholar 

  69. Steinhauer, D.E., Vlahacos, C.P., Wellstood, F.C., Anlage, S.M., Canedy, C., Ramesh, R., Stanishevsky A., and Melngailis, J. (1999) Imaging of Microwave Permittivity, Tunability, and Damage Recovery in (Ba,Sr)TiO3 Thin Films, Appl. Phys. Lett. 75, 3180–3182.

    Article  ADS  Google Scholar 

  70. Cady, W.G. (1964) Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, Dover Publications, New York.

    Google Scholar 

  71. Devonshire, A.F. (1949) Theory of Barium Titanate. I., Philos. Mag. 40, 1040–1063.

    Google Scholar 

  72. Devonshire, A.F. (1954) Theory of Ferroelectrics, Adv. Phys. 3, 85–130.

    Article  MATH  ADS  Google Scholar 

  73. Guthner, P. and Dransfeld, K. (1992) Local Poling of Ferroelectric Polymers by Scanning Force Microscopy, Appl. Phys. Lett. 61, 1137–1139.

    Article  ADS  Google Scholar 

  74. Franke, K., Besold, J., Haessle, W., and Seegebarth, C. (1994) Modification and Detection of Domains on Ferroelectric PZT Films by Scanning Force Microscopy, Surf. Sci. Lett. 302, L283–L288.

    Article  Google Scholar 

  75. Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarwal, S., Yang, B., Wuttig, M., Ramesh, R., Auciello, O., and Venkatesan, V. (1997) Nanoscale Imaging of Domain Dynamics and Retention in Ferroelectric Thin Films, Appl. Phys. Lett. 71, 3492–3494.

    Article  ADS  Google Scholar 

  76. Hidaka, T., Maruyama, T., Sakai, I., Saitoh, M., Wills, L.A., Hiskes, R., Dicarolis S.A., and Amano, J. (1997) Formation and Observation of 50 nm Polarized Domains in Pb(Zr1−xTix)O3 Films Using Scanning Probe Microscopy, Integr. Ferroelectr. 17, 319–327.

    Article  Google Scholar 

  77. Eng, L.M., Guntherodt, H.-J., Schneider, G.A., Kopke U., and Saldana, J.M. (1999) Nanoscale Reconstruction of Surface Crystallography from Three-Dimensional Polarization Distribution in Ferroelectric Barium Titanate Ceramics, Appl. Phys. Lett. 74, 233–235.

    Article  ADS  Google Scholar 

  78. Roelofs, A., Böttger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L.M. (2000) Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy, Appl. Phys. Lett. 77, 3444–3446.

    Article  ADS  Google Scholar 

  79. Gruverman, A., Auciello, O., and Tokumoto, H. (1998) Imaging and Control of Domain Structures in Ferroelectric Thin Films via Scanning Force Microscopy, Ann. Rev. Mater. Sci. 28, 101–123.

    Article  ADS  Google Scholar 

  80. Ganpule, C.S., Roytburd, A.L., Nagarajan, V., Hill, B.K., Ogale, S.B., Williams, E.D., Ramesh, R., and Scott, J.F. (2002) Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films, Phys. Rev. B 65, 014101.

    ADS  Google Scholar 

  81. Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarwal, S., and Ramesh, R. (1998) Nanoscale Scanning Force Imaging of Polarization Phenomena in Ferroelectric Thin Films, MRS Bull. 23, 33–42.

    Google Scholar 

  82. Harnagea, C., Pignolet, A., Alexe, M., et al. (2001) Piezoresponse Scanning Force Microscopy: What Quantitative Information Can We Really Get out of Piezoresponse Measurements on Ferroelectric Thin Films?, Integr. Ferroelectr. 38, 23–28.

    Article  Google Scholar 

  83. Abplanalp, M., Eng, L.M., and Gunter, P. (1998) Mapping The Domain Distribution at Ferroelectric Surfaces by Scanning Force Microscopy, Appl. Phys. A — Mater. 66, Part 1, S231–S234.

    Article  ADS  Google Scholar 

  84. Paruch, P., Tybell, T., and Triscone, J.M. (2001) Nanoscale Control of Ferroelectric Polarization and Domain Size in Epitaxial Pb(Zr0.2Ti0.8)O3 Thin Films, Appl. Phys. Lett. 79, 530–532.

    Article  ADS  Google Scholar 

  85. Tybell, T., Ahn, C.H., and Triscone, J.M. (1999) Ferroelectricity in Thin Perovskite Films, Appl. Phys. Lett. 75, 856–858.

    Article  ADS  Google Scholar 

  86. Woo, J., Hong, S., Min, D.-K., Shin, H., and No, K. (2002) Effect of Domain Structure on Thermal Stability of Nanoscale Ferroelectric Domains, Appl. Phys. Lett. 80, 4000–4002.

    Article  ADS  Google Scholar 

  87. Hong, S., Woo, J., Shin, H., Jeon, J.U., Pak, Y.E., Colla, E.L., Setter, N., Kim, E., and No, K. (2001) Principle of Ferroelectric Domain Imaging Using Atomic Force Microscope, J. Appl. Phys. 89, 1377–1386.

    Article  ADS  Google Scholar 

  88. Hong, J. Song, H.W., Hong, S., Shin, H., and No, K. (2002) Fabrication and Investigation of Ultrathin, and Smooth Pb(Zr,Ti)O3 Films for Miniaturization of Microelectronic Devices, J. Appl. Phys. 92, 7434–7441.

    Article  ADS  Google Scholar 

  89. Guo, H.Y., Xu, J.B., Wilson, I.H., Xie, Z., Luo, E.Z., Hong, S., and Yan, H. (2002) Study of Domain Stability on (Pb0.76Ca0.24)TiO3 Thin Films Using Piezoresponse Microscopy, Appl. Phys. Lett. 81, 715–717.

    Article  ADS  Google Scholar 

  90. Christman, J.A., Kim, S.-H., Maiwa, H., Maria, J.-P., Rodriguez, B.J., Kingon, A.I., and Nemanich, R.J. (2000) Spatial Variation of Ferroelectric Properties in Pb(Zr0.3Ti0.7)O3 Thin Films Studied By Atomic Force Microscopy, J. Appl. Phys. 87, 8031–8034.

    Article  ADS  Google Scholar 

  91. Abplanalp, M., Fousek, J., and Gunter, P. (2001) Higher Order Ferroic Switching Induced by Scanning Force Microscopy, Phys. Rev. Lett. 86, 5799–5802.

    Article  ADS  Google Scholar 

  92. Harnagea, C., Pignolet, A., Alexe, M., Hesse D., and Gosele U. (2000) Quantitative Ferroelectric Characterization of Single Submicron Grains In Bi-Layered Perovskite Thin Films, Appl. Phys. A — Mater. 70, 261–267.

    Article  ADS  Google Scholar 

  93. Pignolet, A., Schafer, C., Satyalakshmi, K.M., Harnagea C., Hesse D., and Gosele U. (2000) Orientation Dependence of Ferroelectricity in Pulsed-Laser-Deposited Epitaxial Bismuth-Layered Perovskite Thin Films, Appl. Phys. A — Mater. 70, 283–291.

    Article  ADS  Google Scholar 

  94. Harnagea, C., Pignolet, A., Alexe, M., Satyalakshmi K.M., Hesse D., and Gosele U. (1999) Nanoscale Switching and Domain Structure of Ferroelectric BaBi4Ti4O15 Thin Films, Jpn. J. Appl. Phys. 38, Part 2, L1255–L1257.

    Article  ADS  Google Scholar 

  95. Hong, S. and Setter, N. (2002) Evidence for Forward Domain Growth Being Rate-Limiting Step in Polarization Switching in (111)-Oriented Pb(Zr0.45Ti0.55)O3 Thin Film Capacitors, Appl. Phys. Lett. 81, 3437–3439.

    Article  ADS  Google Scholar 

  96. Hong, S., Colla, E.L., Kim, E., Taylor, D.V., Tagantsev, A.K., Muralt, P., No, K., and Setter, N. (1999) High Resolution Study of Domain Nucleation and Growth During Polarization Switching in Pb(Zr,Ti)O3 Ferroelectric Thin Film Capacitors, J. Appl. Phys. 86, 607–613.

    Article  ADS  Google Scholar 

  97. Alexe, M., Harnagea, C., Hesse, D., and Goesele, U. (1999) Patterning and Switching of Nanosize Ferroelectric Memory Cells, Appl. Phys. Lett. 75, 1793–1795.

    Article  ADS  Google Scholar 

  98. Alexe, M., Gruverman, A., Harnagea, C., Zakharov, N.D., Pignolet, A., Hesse D., and Scott, J.F. (1999) Switching Properties of Self-Assembled Ferroelectric Memory Cells, Appl. Phys. Lett. 75, 1158–1160.

    Article  ADS  Google Scholar 

  99. Ganpule, C.S., Stanishevsky, A., Aggarwal, S., Melngailis, J., Williams, E., Ramesh, R., Joshi, V., and Paz de Araujo, C.A. (1999) Scaling of Ferroelectric and Piezoelectric Properties in Pt/SrBi 2Ta2O9/Pt Thin Films, Appl. Phys. Lett. 75, 3874–3876.

    Article  ADS  Google Scholar 

  100. Auciello, O., Gruverman, A., and Tokumoto, H. (1997) Scanning Force Microscopy Studies of Domain Structure in the Vicinity of Fatigued and Nonfatigued Ferroelectric Capacitors, Integr. Ferroelectr., 15, 107–114.

    Article  Google Scholar 

  101. Christman, J.A., Woolcott, R.Jr., Kingon, A., and Nemanich, R.J. (1998) Piezoelectric Measurements with Atomic Force Microscopy, Appl. Phys. Lett. 73, 3851–3853.

    Article  ADS  Google Scholar 

  102. Kalinin S.V., and Bonnell, D.A., (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B 65, 125408.

    ADS  Google Scholar 

  103. Tiedke, S., Schmitz, T., Prume, K., Roelofs, A., Schneller, T., Kall, U., Waser, R., Ganpule, C.S., Nagarajan, V., Stanishevsky, A., and Ramesh, R. (2001) Direct Hysteresis Measurements of Single Nanosized Ferroelectric Capacitors Contacted With an Atomic Force Microscope, Appl. Phys. Lett. 79, 3678–3680.

    Article  ADS  Google Scholar 

  104. Likodimos, V., Labardi, M., and Allegrini, M. (2002) Domain Pattern Formation and Kinetics on Ferroelectric Surfaces under Thermal Cycling Using Scanning Force Microscopy, Phys. Rev. B 66, 024104.

    ADS  Google Scholar 

  105. Gruverman, A., Isobe C., and Tanaka, M. (2001) Nanoscale Properties of SrBi2Ta2O9 Thin Films, Mat. Res. Soc. Symp. Proc. 655, CC8.5.

    Google Scholar 

  106. Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., Setter, N., and No, K. (1998) Direct Observation of Region by Region Suppression of the Switchable Polarzation (Fatigue) in Pb(Zr,Ti)O3 Thin Film Capacitors with Pt Electrodes, Appl. Phys. Lett. 72, 2763–2765.

    Article  ADS  Google Scholar 

  107. Gruverman, A., Auciello O., and Tokumoto, H. (1996) Nanoscale Investigation of Fatigue Effects in Pb(Zr,Ti)O3 Films, Appl. Phys. Lett. 69, 3191.

    Article  ADS  Google Scholar 

  108. Hong, J.W., Jo, W., Kim, D.C., Cho, S.M., Nam, H.J., Lee, H.M., and Bu, J.U. (1999) Nanoscale Investigation of Domain Retention in Preferentially Oriented Pb(Zr0.53Ti0.47)O3 Thin Films on Pt and on LaNiO3, Appl. Phys. Lett. 75, 3183–3185.

    Article  ADS  Google Scholar 

  109. Gruverman A. and Tanaka, M. (2001) Polarization Retention in SrBi2Ta2O9 Thin Films Investigated at Nanoscale, J. Appl. Phys. 89, 1836–1843.

    Article  ADS  Google Scholar 

  110. Benedetto, J.M., Moore, R.A., and McLean, F.B. (1994) Effects of Operating Conditions on the Fast-Decay Component of the Retained Polarization in Lead Zirconate Titanate Thin Films, J. Appl. Phys. 75, 460–466.

    Article  ADS  Google Scholar 

  111. Fatuzzo E. and Merz, W.J. (1967) Ferroelectricity, North-Holland, Amsterdam.

    Google Scholar 

  112. Lohse, O., Tiedke, S., Grossmann, M., and Waser, R. (1998) Externally Determined and Intrinsic Contributions to the Polarization Switching Currents in SrBi2Ta2O9 Thin Films, Integr. Ferroelectr. 22, 123–131.

    Article  Google Scholar 

  113. Tybell, T., Paruch, P., Giamarchi, T., and Triscone, J.-M. (2002) Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8)O3 Thin Films, Phys. Rev. Lett. 89, 097601.

    Article  ADS  Google Scholar 

  114. Mele, E.J. (2001) Screening of a Point Charge by an Anisotropic Medium: Anamorphoses in the Method of Images, Am. J. Phys. 69, 557–562.

    Article  ADS  Google Scholar 

  115. Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Ferris, J.H., Zhang, Q., and Dunn, S. (2002) Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: a New Route toward Complex Nanostructures, Nano Letters 2, 589–593.

    Article  ADS  Google Scholar 

  116. Fridkin, V.M. (1979) Photoferroelectrics, Springer-Verlag, Berlin.

    Google Scholar 

  117. Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y., and Molotski, M.(2003) Submicron Ferroelectric Domain Structures Tailored by High-Voltage Scanning Probe Microscopy, Appl. Phys. Lett. 82, 103–105.

    Article  ADS  Google Scholar 

  118. Terabe, K., Takekawa, S., Nakamura, M., Kitamura, K., Higuchi, S., Gotoh, Y., and Gruverman, A. (2002) Imaging and Engineering the Nanoscale Domain Structure in Sr0.61Ba0.39Nb2O6 crystal Using a Scanning Force Microscope, Appl. Phys. Lett. 81, 2044–2046.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Gruverman, A. (2005). SFM-Based Methods for Ferroelectric Studies. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_10

Download citation

Publish with us

Policies and ethics