Skip to main content

Functional Materials: Properties, Processing and Applications

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.stanford.edu/telemedicine

    Google Scholar 

  2. Valasek, J. (1921) Piezoelectric and allied phenomena in Rochelle Salt, Phys. Rev. 17, 475–481.

    Article  ADS  Google Scholar 

  3. Bush, G. (1987) Ealy history of ferroelectricity, Ferroelectrics 74, 267–284.

    Google Scholar 

  4. Moore, G.E. (1965) Cramming more components onto integrated circuits, Electronics 38, 1–4.

    Google Scholar 

  5. Zahn, D.R.T., Kampen, T.U. and Scholz, R. (2004) Organic Molecular Semiconductors: Structural, Optical, and Electronic Properties of Thin Films, Wiley and Sons.

    Google Scholar 

  6. Petty, H.R., Bryce, M.R., and M.C. Petty (1997) Introduction to Molecular Electronics, John Wiley.

    Google Scholar 

  7. Gardner, J.W., Varadan, V.K., and Wadelkarim, O.O.A. (2001) Microsensors, MEMS and Smart Devices, John Wiley.

    Google Scholar 

  8. Jaffe, B., Cook Jr., W.R., and Jaffe, H. (1971) Piezoelectric Ceramics, Academic Press, London.

    Google Scholar 

  9. Lines, M.E. and Glass, A.M. (1977) Principles and Applications of Ferroelectric and Related Materials, Clarendon Press, Oxford.

    Google Scholar 

  10. Herbert, J.M. (1982) Ferroelectric Transducers and Sensors, Gordon and Breach, London.

    Google Scholar 

  11. Moulson, A.J. and Herbert, J.M. (1990) Electroceramics, Materials, Properties, and Applications, Chapman and Hall, London.

    Google Scholar 

  12. Buchanan, R.C. (1991) Ceramic Materials for Electronics — Processing, Properties and Applications, 2nd Edition, Marcel Dekker, New York.

    Google Scholar 

  13. Xu, Y. (1991) Ferroelectric Materials and their Applications, North Holland, Amsterdam.

    Google Scholar 

  14. Uchino, K. (1997) Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, Norwell, MA, USA.

    Google Scholar 

  15. Hoffmann-Eifert, S. (2003) Dielectrics, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 33–57.

    Google Scholar 

  16. Uchino, K. (2000) Ferroelectric Devices, Marcel Dekker, New York.

    Google Scholar 

  17. Richter, D. and Trolier-McKinstry, S. (2003) Ferroelectrics, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 61–77

    Google Scholar 

  18. Haertling, G.H. (1999) Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc., 82, 797–818.

    Article  Google Scholar 

  19. Lemanov, V.V., Sotnikov, A.V., Smirnova, E.P., Weihnacht, M., and Kunze, R. (1999) Perovskite CaTiO3 as an incipient ferroelectric, Solid State Commun. 110, 611–614

    Article  ADS  Google Scholar 

  20. Fleury, P.A., Scott, J.F. and Worlock, J.M. (1968) Soft Phonon Modes and 110 °K Phase Transition in SrTiO3, Phys. Rev. Lett. 21, 16–19.

    Article  ADS  Google Scholar 

  21. Lytle, F.W. (1964) X-ray Diffractometry of Low-Temperature Phase Transformations in Strontium Titanate, J. Appl. Phys. 35, 2212–2215.

    Article  ADS  Google Scholar 

  22. Muller, K.A. and Burkard, H. (1979) SrTiO3: Intrinsic Quantum Paraelectric Below 4 K, Phys. Rev. B 19, 3593–3602

    ADS  Google Scholar 

  23. Uwe, H., and Sakudo, T. (1976) Stress-Induced Ferroelectricity and Soft Phonon Modes in SrTiO3, Phys. Rev. B 13, 271–286

    ADS  Google Scholar 

  24. Bednorz, J.G. and Muller, K.A. (1984) Sr1−xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness Phys. Rev. Lett. 52, 2289–2292.

    Article  ADS  Google Scholar 

  25. Lemanov, V.V., Smirnova, E.P., Syrnikov, P.P., and Tarakanov, E.A. (1996) Phase transitions and glasslike behavior in Sr1−xBaxTiO3, Phys. Rev. B 54, 3151–3157.

    ADS  Google Scholar 

  26. Lemanov, V.V., Smirnova, E.P., and Tarakanov, E.A. (1997) Ferroelectric properties of SrTiO3-PbTiO3 solid solutions, Sov. Phys. Solid State 39, 628–631

    Article  ADS  Google Scholar 

  27. Itoh, M., Wang, R., Inaguma, Y., Yamaguchi, T., Shan, Y.J., and Nakamura, T. (1999) Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82, 3540–3543

    Article  ADS  Google Scholar 

  28. Cross, L.E., (1994) Relaxor ferroelectrics: an overview, Ferroelectrics 151, 305–320.

    Google Scholar 

  29. Zhou, L. (1996) Study of the relaxor behaviour of Pb(Fe2/3W1/3)O3 ceramics, Ph D Thesis, University of Aveiro, Portugal.

    Google Scholar 

  30. Ye, Z.G., Dong, M., and Zhang, L., (1999) Domain structures and phase transitions of the relaxor-based piezo-/ferroelectric (1−x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals, Ferroelectrics 229, 223.

    Article  Google Scholar 

  31. Smolenskii, G.A. and Isupov, V.A. (1954) Dokl. Akad. Nauk SSSR 9, 653; Smolenskii, G.A. Agranovskaya, A.I. (1958) Dielectric polarization and Losses of some complex compounds, Sov. Phys. — Tech. Phys. 3, 1380–1382.

    Google Scholar 

  32. Viehland, D., Lang, S.J., Cross, L.E., Wuttig, M., (1990) Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors, J. Appl. Phys. 68, 2916–2921; Viehland, D., Li, J.-F., Jang, S.J., Cross, L.E., and Wuttig, M. (1991) Dipolar-glass Model for Lead Magnesium Niobate, Phys. Rev. B 43, 8316–8320.

    Article  ADS  Google Scholar 

  33. Ye, Z.-G., Bing, Y., Gao, J., Bokov, A.A., Stephens, P., Noheda, B., and Shirane, G. (2003) Development of ferroelectric order in relaxor (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (0 ≤ x ≤ 0.15), Phys. Rev. B 67, 104104.

    ADS  Google Scholar 

  34. Dkhil, B., Kiat, J.M., Calvarin, G., Baldinozzi, G., Vakhrushev, S.B. and Suard, E. (2002) Local and long range polar order in the relaxor-ferroelectric compounds PbMg1/3Nb2/3O3 and PbMg0.3Nb0.6Ti0.1O3, Phys. Rev. B 65, 024104.

    ADS  Google Scholar 

  35. Kleemann W. and Klossner, A. (1993) Glassy and domain states in random dipolar systems, Ferroelectrics 150, 35–45.

    Google Scholar 

  36. Blinc, R., Dolinsek, J., Gregorovic, A., Zalar, B., Filipic, C., Kutnjak, Z., and Levstik, A., (2000) NMR and the spherical random bond-random field model of relaxor ferroelectrics, J. Phys. Chem. Sol. 61, 177–183.

    Article  ADS  Google Scholar 

  37. Cross, L.E. (1987) Relaxor ferroelectrics, Ferroelectrics 76, 241–267.

    Google Scholar 

  38. Gruverman, A., Auciello, O., and Tokumoto, H., (1998) Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy, Annu. Rev. Mater. Sci. 28, 101–123.

    Article  ADS  Google Scholar 

  39. Vakhrushev, S.B., Naberezhnov, A.A., Dkhil, B., Kiat, J.-M., Shwartsman, V., Kholkin, A., Dorner, B., and Ivanov, A. (2003) in P.K. Davies and D.J. Singh (eds.), Fundamental Physics of Ferroelectrics 2003, AIP Conf. Proc. No. 677, AIP, New York, pp. 74–83.

    Google Scholar 

  40. Bdikin, I.K., Shvartsman, V.V., and Kholkin, A.L. (2003) Nanoscale domains and local piezoelectric hysteresis in PbZn1/3Nb2/3O3-4.5%PbTiO3 single crystals, Appl. Phys. Lett. 83, 4232–4234.

    Article  ADS  Google Scholar 

  41. Shvartsman, V.V. and Kholkin, A.L. (2004) Domain structure of 0.8PbMg1/3Nb2/3O3-0.2PbTiO3 studied by piezoresponse force microscopy, Phys. Rev. B 69, 014102.

    Google Scholar 

  42. Randall, C.A., Bhalla, A.S., Shrout, T.R., and Cross, L.E. (1990) Classification and Consequences of Complex Lead Perovskite Ferroelectrics with Regard to B-site Cation Oorder, J. Mat. Res. 5, 829–834.

    Article  ADS  Google Scholar 

  43. Reaney, I.M., Wise, P.L., Qazi, I. et al. (2003) Ordering and quality factor in 0.95BaZn1/3Ta2/3O3-0.05SrGa1/2Ta1/2O3 production resonators, J Eur. Ceram. Soc. 23, 3021–3034.

    Article  Google Scholar 

  44. Mitchell, R.H. (2002) Perovskites — Modern and Ancient, Almaz Press Inc., Ontario, Canada.

    Google Scholar 

  45. Ezhilvalavan, S. and Tseng, T.-Y. (2000) Progress in the developments of (Ba,Sr)TiO3 (BST) thin films for gigabit era DRAMs, Mater. Chem. Phys. 65, 227–248.

    Article  Google Scholar 

  46. Schroeder, H. and Kingon, A. (2003) High-permittivity materials for DRAMs, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 541–560

    Google Scholar 

  47. Klein, N. (2003) Microwave communication systems — novel approaches for passive devices, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 759–778.

    Google Scholar 

  48. Cao, W. and Cross, L.E. (1993) Theoretical model for the morphotropic phase boundary in lead zirconate — lead titanate solid solutions, Phys. Rev. B 47, 4825–4830.

    ADS  Google Scholar 

  49. Du, X.H., Zheng, J., Belegundu, U., and Uchino, K. (1998) Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Appl. Phys. Lett. 72, 2421–2423.

    Article  ADS  Google Scholar 

  50. Newnham, R.E. and Ruschau, G.R. (1991) Smart Electroceramics, J. Am. Ceram. Soc. 74, 463–480.

    Article  Google Scholar 

  51. Kuwata, J., Uchino, K., and Nomura, S. (1982) Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single-Crystals, Jpn. J. Appl. Phys. 21, 1298–1302.

    Article  ADS  Google Scholar 

  52. Vilarinho, P.M., Zhou, L., Pöckl, M., Marques, N., and Baptista, J.L. (2000) Dielectric properties of Pb(Fe2/3W1/3)O3 — PbTiO3 solid solution, J. Am. Ceram. Soc. 83, 1149–1152.

    Article  Google Scholar 

  53. Mitoseriu, L., Vilarinho, P.M., and Baptista, J. L. (2002) Phase coexistence in Pb(Fe2/3W1/3)O3 — PbTiO3 solid solutions, Appl. Phys. Lett. 80, 4422–4424.

    Article  ADS  Google Scholar 

  54. Mitoseriu, L., Vilarinho, P.M., and Baptista, J.L. (2002) Properties of Pb(Fe2/3W1/3)O3 — PbTiO3 system in the range of morphotropic phase boundary, Jpn. J. Appl. Phys. 41, 7015–7020.

    Article  ADS  Google Scholar 

  55. Mitoseriu, L., Marre, D., Siri, A.S., and Nanni, P, (2003) Magnetic properties of PbFe2/3W1/3O3-PbTiO3 solid solutions, Appl. Phys. Lett. 83, 5509–5511.

    Article  ADS  Google Scholar 

  56. Zhenrong, L., Wu, A., Vilarinho, P.M., and Reaney, I.M. Core-shell domain structures in Pb(Fe2/3W1/3)O3-PbTiO3 at the morphotropic phase boundary, submitted to Chem. Mater.

    Google Scholar 

  57. Wajler, A., Vilarinho, P.M., Reaney, I.M. Effect of the Composition and the Preparation Technique on the Core-Shell-Structure Formation in (1−x) PbFe2/3W1/3O3 — x PbTiO3 Ceramics, submitted to J. Am. Ceram. Soc.

    Google Scholar 

  58. Smoleskii, G.A., Isupov, V.A., and Agranovskaya, A.I. (1961) Sov. Phys. Solid State 3, 651.

    Google Scholar 

  59. de Araújo, C.A.P., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F. (1995) Fatigue-Free Ferroelectric Capacitors with Platinum-Electrodes, Nature, 374, 627–629.

    Article  ADS  Google Scholar 

  60. Kamba, S., Pokorny, J., Porokhonskyy, V., Petzelt, J., Moret, M.P., and Barber, Z.H. (2002) Ferroelastic phase in SrBi2Ta2O9 and study of the ferroelectric phase-transition dynamics, Appl. Phys. Lett. 81, 1056–1058.

    Article  ADS  Google Scholar 

  61. Gangulli, D. and Chatterjee, M. (1997) Ceramic powder preparation: a handbook, Kluwer Academic Publishers, Boston, USA, pp. 35–73.

    Google Scholar 

  62. Ring, T. (1996) Fundamentals of Ceramic Processing and Synthesis, Academic Press, San Diego, California, USA, pp. 95–110.

    Book  Google Scholar 

  63. Araujo, E.G., Neto, R.M.L., Pillis, M.F. et al. (2003), High energy ball milling processing, Mater. Sci. Forum 416-4, 128–133.

    Article  Google Scholar 

  64. Takai, S. and Esaka, T. (2002) Preparation of functional oxide materials by means of mechanical allowing — in view of ionic conductive oxides, Defect Diffusion Forum 206-2, 3–17.

    Article  Google Scholar 

  65. Stojanovic, B.D. (2003) Mechanochemical synthesis of ceramic powders with perovskite structure, J. Mater. Process Tech. 143, 78–81.

    Article  Google Scholar 

  66. Brankovic, Z., Brankovic, G., Jovalekic, C., et al., (2003) Mechanochemical synthesis of PZT powders, Mat. Sci. Eng. A 345, 243–248.

    Google Scholar 

  67. Mingos, D.M.P. (1992) Microwave synthesis of materials and their precursors, in L.L. Hench and J.K. West (eds.), Chemical processing of advanced materials, John Wiley, New York, pp. 717–725.

    Google Scholar 

  68. Rao, J. and Ramesh, P.D. (1995) Use of microwaves for the synthesis and processing of materials, Bull Mater. Sci. 18, 447–465.

    Article  Google Scholar 

  69. Adam, D. (2003) Microwave chemistry — out of the kitchen, Nature 421, 571–572.

    Article  ADS  Google Scholar 

  70. Tkach A., Vilarinho P. M., Avdeev M., Kholkin A. L, Baptista J. L., (2002) Synthesis by sol-gel and characterization of strontium titanate powders, Key Eng. Mater. 230–232, 40–43.

    Article  Google Scholar 

  71. Messing, G. L., Sabolsky, E. M., Kwon S., Trolier-McKinstry S.(2002) Templated grain growth of textured piezoelectric ceramics, Key-Engineering-Mater. 206–213, 1293–1296

    Article  Google Scholar 

  72. Sabolsky E. M., Trolier-McKinstry S., Messing, G. L (2003) Dielectric and piezoelectric properties of <001> fiber-textured PMN — PT ceramics, J. Appl. Phys. 93(7), 4072–4080.

    Article  ADS  Google Scholar 

  73. Duran C., Trolier-McKinstry S., Messing G. L. (2002) Dielectric and piezoelectric properties of textured Sr 0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth, J. Mat. Res., 17(9), 2399–409

    Article  ADS  Google Scholar 

  74. Ohring, M. (2001) The Materials Science of Thin Films, Elsevier Science & Technology Books.

    Google Scholar 

  75. Auciello, O., Foster, C.M., and Ramesh, R. (1998) Processing technologies for ferroelectric thin films and heterostructures, Annu. Rev. Mater. Sci. 28, 501–531.

    Article  ADS  Google Scholar 

  76. Sheppard, L.M. (1992) Advances in processing of ferroelectric thin films, Ceram. Bull. 71, 85–95.

    Google Scholar 

  77. Schwartz, R.W., Boyle, T.J., Lockwood, S.J., Sinclair, M.B., Dimos, D., and Buchheit, C.D. (1995) Sol-Gel Processing of PZT Thin-Films — A Review of the State-of-the-Art and Process Optimization Strategies, Integr. Ferroelectr. 7, 259–277.

    Article  Google Scholar 

  78. Brinker C.J., Hurd A.J., Schunk P.R., Frye G.C., Ashley C.S., (1992) Review of Sol-Gel Thin-Film Formation, J. Non-Cryst. Solids 147, 424–436.

    Article  ADS  Google Scholar 

  79. Reaney, I.M., Taylor, D.V., and Brooks, K.G. (1998) Ferroelectric PZT thin films by sol-gel deposition, J. Sol-Gel Sci. Techn. 13, 813–820.

    Article  Google Scholar 

  80. Brinker, C.J. and Scherer, G.W. (1990) Sol — gel science: the physics and chemistry of sol-gel processing, Academic Press, New York.

    Google Scholar 

  81. Tuttle, B.A. and Schwartz, R.W. (1996) Solution deposition of ferroelectric thin films, MRS Bulletin 21, 49–54.

    Google Scholar 

  82. Prudenziati, M. (1991) Thick film technology, Sensor Actuat. A-Phys. 25–27, 227–234.

    Google Scholar 

  83. Kholkin, A.L., Wu, A. and Vilarinho, P.M. (2004) Piezoelectric Thick Film Composites: Processing and Applications, in Recent Research Developments in Materials Science, Research Sign Post, 5, pp. 1–24.

    Google Scholar 

  84. Akiyama, Y., Yamanaka, K., Fujisawa, E., and Kowata, Y. (1999) Development of lead zirconate titanate family thick films on various substrates, Jpn. J. Appl. Phys. 38, 5524–5527.

    Article  ADS  Google Scholar 

  85. Jeon, Y., Kim, D.G., No, K., Kim, S.J., and Chung, J., (2000) Residual stress analysis of Pt bottom electrodes on ZrO2/SiO2/Si and SiO2/Si substrates for Pb(ZrTi)O3 thick films, Jpn. J. Appl. Phys. 39, 2705–2709.

    Article  ADS  Google Scholar 

  86. Kubota, T., Tanaka, K., Sakabe, Y. (1999) Formation of Pb(Zr,Ti)O3-Pb(Zn,Nb)O3 system piezoelectric thick films in low-temperature firing process, Jpn. J. Appl. Phys. 38, 5535–5538.

    Article  ADS  Google Scholar 

  87. Glynne-Jones, P., Beeby, S.P., Dargie, P., Papakostas, T., and White, N.M., (2000) An investigation into the effect of modified firing profiles on the piezoelectric properties of thick-film PZT layers on silicon, Meas. Sci. Technol. 11, 526–531.

    Article  ADS  Google Scholar 

  88. Lubitz, K., Schuh, C., Steinkopff, T., and Wolff, A. (2002) Materials aspects for reliability and life time of PZT multilayer actuators, Piezoelectric Materials for the end user, Conference notes, Polecer Meeting, Interlaken, February 2002.

    Google Scholar 

  89. Nieto, E., Fernandez, J.F., Moure, C., and Duran, P. (1996) Multilayer piezoelectric devices based on PZT, J. Mater. Sci: Mater. Electron. 7, 55–60.

    Article  Google Scholar 

  90. Galassi, C., Roncari, E., Capiani, C., and Pinasco, P. (1997) PZT-based suspensions for tape casting, J. Eur. Ceram. Soc. 17, 367–371.

    Article  Google Scholar 

  91. Raeder, H., Simon, C., Chartier, T., and Toftegaard, H.L. (1994) Tape casting of zirconia for ion-conducting membranes: a study of dispersants, J. Eur. Ceram. Soc. 13, 485–491.

    Article  Google Scholar 

  92. Zhang, H.Z., Leppavuori, S., Uusimaki, A., Karjaleinen, P., and Rautioaho, R. (1994) Compositional and structural behaviour of screen-printed PZT thick films during rapid sintering, Ferroelectrics 154, 277–282.

    Google Scholar 

  93. Fernandez, J.F., Nieto, E., Moure, C., Duran, P., and Newnham, R.E. (1995) Processing and microstructure of porous and dense PZT thick films on Al2O3, J. Mater. Sci. 30, 5399–5404.

    Article  ADS  Google Scholar 

  94. Tanaka, K., Kubota, T., Sakabe, Y. (2002) Preparation of piezoelectric Pb(Zr,Ti)O3-Pb(Zn1/3Nb2/3)O3 thick films on ZrO2 substrates using low-temperature firing, Sensor Actuat. A-Phys. 96, 179–183.

    Article  Google Scholar 

  95. Sarkar, P. and Nicholson, P.S., (1996) Electrophoretic deposition (EPD): mechanisms, kinetics, and applications to ceramics, J. Am. Ceram. Soc. 79, 1987–2002.

    Article  Google Scholar 

  96. Van de Biest, O.O. and Vandeperre, L.J. (1999) Electrophoretic deposition of materials, Annu. Rev. Mater. Sci. 29, 327–352.

    Article  ADS  Google Scholar 

  97. Boccaccini A.R. and Zhitomirsky, I. (2002) Application of electrophoretic and electrolytic deposition techniques in ceramics processing, Curr. Opin. Solid St. M. 6, 251–260.

    Article  Google Scholar 

  98. Ngai, M., Yamashita, K., Umegaki, T., and Takuma, Y. (1993) Electrophoretic deposition of ferroelectric barium titanate thick films and their dielectrical properties, J. Am. Ceram. Soc. 76, 253–255.

    Article  Google Scholar 

  99. Zhang, J. and Lee, B.I. (2000) Electrophoretic deposition and characterization of micrometer-scale BaTiO3 based X/R dielectric thick films, J. Am. Ceram. Soc. 83, 2417–2422.

    Article  Google Scholar 

  100. Van Tassel, J. and Randall, C.A. (1999) Electrophoretic deposition and sintering of thin/thick PZT films, J. Eur. Ceram. Soc. 19, 955–958.

    Article  Google Scholar 

  101. Su, B., Ponton C.B. and Button, T.W. (2001) Hydrothermal and electrophoretic deposition of lead zirconate tinate (PZT) films, J. Eur. Ceram. Soc. 21, 1539–1542.

    Article  Google Scholar 

  102. Zhang, R.F., Ma, J., and Kong, L.B. (2002) Lead zirconate titanate thick film prepared by electrophoretic deposition from oxide mixture, J. Mat. Res. 17, 933–935.

    Article  MATH  ADS  Google Scholar 

  103. Wu, A., Vilarinho, P.M., and Kingon, A.I. (2004) Electrophoretic deposition of lead zirconate titanate films on metal foils for embedded components, submitted to J. Am. Ceram. Soc.

    Google Scholar 

  104. Barrow, D.A., Petroff, T.E., and Sayer, M., (1996) US Patent 5,585,136.

    Google Scholar 

  105. Kholkine, A.L., Yarmarkin, V., Wu, A., Vilarinho, P.M., and Baptista, J.L. (2000) Thick piezoelectric coatings via modified sol-gel technique, Integr. Ferroelectr. 30, 245–259.

    Article  Google Scholar 

  106. Kholkin, A.L., Yarmarkin, V.K., Wu, A., Avdeev, M., Vilarinho, P.M., and Baptista, J.L. (2001) PZT — based thik film composites via a modified sol-gel route, J. Europ. Ceram. Soc. 21, 1535–1538.

    Article  Google Scholar 

  107. Vilarinho, P.M., Wu, A., Kholkin, A. (2003) Method for the production of ceramic composites thick films by sedimentation and infiltration of sol-gel solutions, Portuguese patent pending n.o 102 909.

    Google Scholar 

  108. Auciello, O., Scott, J.F., and Ramesh, R. (1998) The Physics Of Ferroelectric Memories, Physics Today 51, 22–27.

    Article  Google Scholar 

  109. Bottger, U., and Summerfelt, S.R. (2003) Ferroelectric Random Access Memories, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 567–588.

    Google Scholar 

  110. Whatmore, R.W., Patel, A., Shorrocks, N.M., and Ainger, F.W. (1990) Ferroelectric Materials for Thermal IR Sensors: State of Art and Perspectives, Ferroelectrics 104, 269–275.

    Google Scholar 

  111. Lyshevski, S.E. (2002) MEMS and NEMS: systems, devices, and structures, CRC Press, Boca Raton, USA.

    Google Scholar 

  112. Saffo, P. (2002) Untangling the Future, Business 2.0.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Vilarinho, P. (2005). Functional Materials: Properties, Processing and Applications. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_1

Download citation

Publish with us

Policies and ethics