Skip to main content

Abstract

We present a compact physics-based model for the nanoscale gate-all-around (GAA) MOSFET working in the ballistic limit. The current through the device is obtained by means of the Landauer approach, the barrier height being the key parameter in the model. The exact solution of the Poisson's equation is obtained in order to deal with all the operation regions tracing properly the transitions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-T. Park and J.-P. Colinge, Multiple-gate SOI MOSFETs: device design guidelines, IEEE Trans. Electron Dev. 49(12), 2222–2229 (2002).

    Article  Google Scholar 

  2. H.-S. P. Wong, Beyond the conventional transistor, IBM Journal of Research and Development 46(2/3), 133–168 (2002).

    Article  Google Scholar 

  3. K. Natori, Ballistic metal-oxide-semiconductor field effect transistor, J. Appl. Phys. 76(8), 4879–4890 (1994).

    Article  Google Scholar 

  4. D. Jiménez, J. J. Sáenz, B. Iñíguez, J. Suñé, L. F. Marsal, and J. Pallarès, Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect transistor, J. Appl. Phys. 94(2), 1061–1068 (2003).

    Article  Google Scholar 

  5. D. Jiménez, J. J. Sáenz, B. Iñíguez, J. Suñé, L. F. Marsal, and J. Pallarès, Compact modeling of nanoscale MOSFETs in the ballistic limit, in Proc. ESSDERC Conf. 2003, 187–190.

    Google Scholar 

  6. D. Jiménez, J. J. Sáenz, B. Iñíguez, J. Suñé, L. F. Marsal, and J. Pallarès, Modeling of nanoscale gate-all-around MOSFETs, IEEE Electron Dev. Lett. 25(5), 314–316 (2004).

    Article  Google Scholar 

  7. Y. Chen and J. Luo, A comparative study of double-gate and surrounding-gate MOSFETs in strong inversion and accumulation using an analytical model, in Technical Proceedings of the International Conference on Modeling and Simulation of Microsystems 2001, 546–549.

    Google Scholar 

  8. P. L. Chambré, On the solution of the Poisson-Boltzmann equation with application to the theory of thermal explosions, J. Chem. Phys. 20(11), 1795–1797 (1952).

    Article  Google Scholar 

  9. J. H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press: Cambrigde UK, 1998).

    Google Scholar 

  10. M. Je, S. Han, I. Kim, and H. Shin, A silicon quantum wire transistor with one-dimensional subband effects, Solid-State Electronics 44, 2207–2212 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Jiménez, D., Iñíguez, B., Sáenz, J.J., Suñé, J., Marsal, L.F., Pallarès, J. (2005). Compact Model of the Nanoscale Gate-All-Around MOSFET. In: Flandre, D., Nazarov, A.N., Hemment, P.L. (eds) Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment. NATO Science Series II: Mathematics, Physics and Chemistry, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3013-4_37

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3013-4_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3011-6

  • Online ISBN: 978-1-4020-3013-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics