Skip to main content

Abstract

A survey of crucial issues relating to the origin of Silicon On Insulator based microphotonics is presented. The main problem in microphotonics is the large size of today's photonic circuits in comparison with ULSI electronic ones. To increase the level of integration in photonic components, compact building blocks are required, performing elementary optical functions. Photonic crystals or, generally, photonic band gap materials offer a way to this reduction in size. Special attention is given to optical properties of two dimensional photonic crystal slabs which are well adapted to the domain of integrated optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bestwick, ASOC Silicon Integrated Optics Technology, in: Proc. SPIE “Optoelectronic Integrated Circuits and Packaging III”, edited by M.R. Feldman, J.G. Grote and M.K. Hibbs-Brenner, (San Diego, USA, 1999) 3631, pp.182–190

    Google Scholar 

  2. L. Pavesi, Will Silicon be the Photonic Material of the Third Millenium?, J.Phys.:Condens.Matter,. 15, pp.R1169–R1196 (2003)

    Article  Google Scholar 

  3. A. Tip, A. Moroz, and JM Combes, Band Structure of Absorptive Photonic Crystals, J. Phys. A: Math. Gen. 33, pp.6223–6252 (2000)

    Article  MathSciNet  Google Scholar 

  4. E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett., 58(20) pp.2059–2062 (1987)

    Article  Google Scholar 

  5. S. John, Strong Localization of Photons in Certain Disordered Dielectric SuperLattices, Phys. Rev. Lett., 58(23) pp.2486–2489 (1987)

    Article  Google Scholar 

  6. M. Wubs and A. Lagendijk, Local Optical Density of States in Finite Crystals of Plane Scatterers, Phys. Rev. E 65, p.046612 (2002)

    Article  Google Scholar 

  7. A. Moroz, Ch. Sommers, Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices, J.Phys.:Condens.Matter,. 11, pp.997–1008 (1999)

    Article  Google Scholar 

  8. Zh.-Y. Li, Zh.-Q. Zhang, Fragility of Photonic Band Gaps in Inverse-Opal Photonic Crystals, Phys. Rev. B, 62(3), pp.1516–1519 (2000)

    Article  Google Scholar 

  9. H.-Y. Ryu, J.-Ki Hwang, and Y.-H. Lee, Effect of Size Nonuniformities on the Band Gap of Two-Dimensional Photonic Crystals, Phys. Rev. B 59(8), pp.5463–5469 (1999)

    Article  Google Scholar 

  10. E. Lidorikis, M.M. Sigalas, E.N. Economou, and C.M. Soukoulis, Gap Deformation and Classical Wave Localization in Disordered Two-Dimensional Photonic-Band-Gap Materials, Phys. Rev. B, 61(20) pp.13458–13464 (2000)

    Article  Google Scholar 

  11. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C.M. Soukoulis, Photonic Band Gaps, Defect Characteristics, and Waveguiding in Two-Dimensional Disordered Dielectric and Metallic Photonic Crystals, Phys. Rev. B, 64, p.195113 (2001)

    Article  Google Scholar 

  12. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis, K.M. Ho, Measurement of a Three-Dimensional Photonic Band Gap in a Crystal Structure Made of Dielectric Rods, Phys. Rev. B, 50(3), pp.1945–1948 (1994)

    Article  Google Scholar 

  13. S. Noda, K. Tomoda, N. Yamamoto, Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths, Science, 289(5479), pp.604–606 (2000)

    Article  Google Scholar 

  14. B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, Theoretical Study of Photonic Band Gaps in Woodpile Crystals,, Phys. Rev. E, 67, p.066601 (2003)

    Article  Google Scholar 

  15. S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and L.A. Kolodziejski, Guided Modes in Photonic Crystal Slabs, Phys. Rev. B, 60(8), pp.5751–5758 (1999)

    Article  Google Scholar 

  16. N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal, Phys. Rev. Lett, 86(11), pp.2289–2292 (2001)

    Article  Google Scholar 

  17. R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos, Existence of a Photonic Band Gap in Two Dimensions, Appl. Phys. Lett., 61(4), pp.495–497 (1992)

    Article  Google Scholar 

  18. P.R. Villeneuve, M. Piche, Photonic Band Gaps in Two-Dimensional Square and Hexagonal Lattices, Phys. Rev. B, 46(8), pp.4969–4972 (1992)

    Article  Google Scholar 

  19. R. Padjen, J.M. Gerard, J.Y. Marzin, Analysis of the Filling Pattern Dependence of the Photonic Bandgap for Two-Dimensional Systems, J. Mod. Opt., 41(2), pp.295–310 (1994)

    Google Scholar 

  20. J. Schilling, A. Birner, F. Muller, R.B. Wehrspohn, R. Hillebrand, U. Gosele, K. Busch, S. John, S.W. Leonard and H.M. van Driel, Optical Characterization of 2D Macroporous Silicon Photonic Crystals with Bandgaps Around 3.5 and 1.3 µm, Opt. Mat., 17, pp.7–10 (2001)

    Article  Google Scholar 

  21. D. Cassagne, C. Jouanin, D. Bertho, Photonic Band Gaps in a Two-Dimensional Graphite Structure, Phys. Rev. B, 52(4), pp.R2217–R2220 (1995)

    Article  Google Scholar 

  22. P.R. Villeneuve, M. Piche, Photonic Band Gaps in Two-Dimensional Square Lattices: Square and Circular rods, Phys. Rev. B, 46(8), pp.4973–4975 (1992)

    Article  Google Scholar 

  23. M. Agio, L.C. Andreani, Complete Photonic Band Gap in a Two-Dimensional chessboard Lattice, Phys. Rev. B, 61(23), pp.15519–15522 (2000)

    Article  Google Scholar 

  24. Z. Zhang, S. Satpathy, Electromagnetic Wave Propagation in Periodic Structures: Bloch wave Solution of Maxwell's Equations, Phys. Rev. Lett, 65(21), pp.2650–2653 (1990)

    Article  Google Scholar 

  25. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic Band Structure: the Face-Centered-Cubic Case Employing Nonspherical Atoms, Phys. Rev. Lett., 65(17) pp.2295–2298 (1991)

    Article  Google Scholar 

  26. K. Sakoda, Transmittance and Bragg Reflectivity of Two-Dimensional Photonic Lattices, Phys. Rev. B, 52(12), pp.8992–9002 (1995)

    Article  Google Scholar 

  27. E. Lidorikis, M.M. Sigalas, E.N. Economou, C.M. Soukoulis, Tight-Binding Parametrization for Photonic Band Gap Materials, Phys. Rev. Lett, 81(7), pp.1405–1408 (1998)

    Article  Google Scholar 

  28. Yu.N. Barabanenkov, V.L. Kouznetsov, M.Yu. Barabanenkov, Transfer Relations for Electromagnetic Wave Scattering From Periodic Dielectric One-Dimensional Interface, in Progress in Electromagnetic Research, edited by J.A. Kong (EMW Publishing, Cambridge, Massachusetts USA, 1999) 24, pp.39–75

    Google Scholar 

  29. Yu.N. Barabanenkov, M.Yu. Barabanenkov, Method of Transfer Relations in Theory of Multiple Resonant Scattering of Waves as Applied to Diffraction Gratings and Photonic Crystals, J. Exper. Theor. Phys., 96(4), pp.674–683 (2003)

    Article  Google Scholar 

  30. P. Sanchis, J. MartÍ, J. Blasco, A. MartÍnez, and A. GarcÍa, Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal circuits, Opt. Express, 10(24), pp.1391–1397 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Barabanenkov, M., Aristov, V., Mordkovich, V. (2005). SOI Technology as a Basis for Microphotonic-Microelectronic Integrated Devices. In: Flandre, D., Nazarov, A.N., Hemment, P.L. (eds) Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment. NATO Science Series II: Mathematics, Physics and Chemistry, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3013-4_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3013-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3011-6

  • Online ISBN: 978-1-4020-3013-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics