Skip to main content

Translational Parallel Robots with Uncoupled Motions

A structural synthesis approach

  • Chapter
Product Engineering

Abstract

The paper presents a structural synthesis approach of translational parallel manipulators (TPMs) with uncoupled motions (UM) and revolute actuators (RA) situated on the fixed base (TPMs-UM-RA). Parallel robotic manipulators (PMs) show, in general, desirable characteristics like a large payload to robot weight ratio, considerable stiffness, low inertia and high dynamic performances. With respect to serial manipulators, disadvantages consist in a smaller workspace, complex command and a lower dexterity due to a high motion coupling and multiplicity of singularities inside their workspace. A TPM is a 3-DOM (degree of mobility) parallel mechanism whose output link, called platform, can achieve three independent orthogonal translational motions with respect to the fixed base. The manipulators presented in this paper have three legs connecting the moving platform and the base (fixed platform). Only one pair per leg is actuated and the motors are situated on the fixed base. Linear and revolute actuators can be used. Due to space limitations, in this paper we consider only rotational actuators (RA). A one-to-one correspondence exists between the actuated joint space and the operational space of the moving platform. The Jacobian matrix of TPM-UM is a 3×3 diagonal matrix throughout the entire workspace. A method is proposed for structural synthesis based on the theory of linear transformations and an evolutionary morphology approach. The method allows us to obtain all structural solutions of TPMs-UM-RA in a systematic manner. Overconstrained/isostatic solutions with elementary/complex and identical/different legs are obtained. TPM-UM have the advantage of simple command and important energy-saving due to the fact that, for a unidirectional translation, only one motor works as in a serial translational manipulator. Only a small number of the solutions of TPMs-UM-RA presented in this paper are actually known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. H. HUNT, Constant-velocity shaft couplings: a general theory (Trans. of the ASME, J. of Eng. For Industry, Vol 95B, pp. 455–464, 1973).

    Google Scholar 

  2. K. H. HUNT, Structural kinematics of in-parallel-actuated robot arms (Trans. of the ASME, J. of Mech. Design, Vol 105, pp. 705–712, 1983).

    Google Scholar 

  3. K. H. HUNT, Kinematic Geometry of Mechanisms (Oxford University Press, 1978).

    Google Scholar 

  4. J.-P. MERLET, Les robots parallèles (Paris: Hermès, 1st ed. 1990, 2nd ed. 1997).

    Google Scholar 

  5. L.-W. TSAI, Mechanism Design: Enumeration of kinematic structures according to function, (CRC Press, 2000).

    Google Scholar 

  6. J. K. SALSBURY, J. J. CRAIG, Articulated hands: force and kinematic issues (Int. J. of Robotics Research, vol. 1/1, pp. 1–17, 1982).

    Google Scholar 

  7. J. ANGELES, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms (New York: Springer, 1987).

    Google Scholar 

  8. A. FATTAH, A. M. HASAN GHASEMO, Isotropic design of spatial parallel manipulators (Int. J. of Robotics Research, vol. 21/9, pp. 811–824, 2002).

    Article  Google Scholar 

  9. R. CLAVEL, Delta a fast robot with parallel geometry (Proc. of the 18th Int. Symp. on Industrial Robots, Lausanne, Switzerland, pp 91–100, 1988).

    Google Scholar 

  10. R. CLAVEL, Device for the movement and positioning of an element in space (US Patent No. 4,976,582, 1990).

    Google Scholar 

  11. F. PIERROT, C. REYNAUD, A. FOURNIER, DELTA: a simple and efficient parallel robot (Robotica, Vol. 8, pp. 105–109, 1990).

    Article  Google Scholar 

  12. J. M. HERVÉ, F. SPARACINO, Structural synthesis of parallel robots generating spatial translation (Proc. of the 5th IEEE Int. Conf. on Advanced Robotics, Pisa, Italy, pp 808–813, 1991).

    Google Scholar 

  13. J. M. HERVÉ, F. SPARACINO, Star, a new concept in robotics (Proc. of the 3rd Int. Workshop on Advances in Robot Kinematics, Ferrara, Italy, pp 176–183, 1992).

    Google Scholar 

  14. J. M. HERVÉ, F. SPARACINO, Synthesis of parallel manipulators using Lie-groups: Y-STAR and H-ROBOT (Proc. IEEE Intl. Workshop on Advanced Robotics, Tsukuba, Japon, pp. 75–80, 1993).

    Google Scholar 

  15. W. T. APPLEBERRY, Anti-rotation positioning mechanism (US Patent No. 5,156,062, 1992).

    Google Scholar 

  16. J. M. HERVÉ, Design of parallel manipulators via the displacement group (Proc. of the 9th World Congress on the Theory of Machines and Mechanisms, Milan, Italy, pp 2079–2082, 1995).

    Google Scholar 

  17. Z. HUANG, W. S. TAO, Y. F. FANG, Study on the kinematic characteristics of 3 dof inparallel actuated platform mechanisms (Mech. Mach. Theory, Vol. 31 (8), pp. 999–1007, 1996).

    Article  Google Scholar 

  18. L. W. TSAI, Kinematics of a three-dof platform with three extensible legs (Recent Advances in Robot Kinematics, J. Lenarčič and V. Parenti-Castelli, eds., Kluwer Academic Publishers, pp 401–410, 1996).

    Google Scholar 

  19. L. W. TSAI, R. E. STAMPER, A parallel manipulator with only translational degrees of freedom (Proc. of the 1996 ASME Design Engineering Technical Conf., Irvine, CA, MECH-1152, 1996).

    Google Scholar 

  20. R. DI GREGORIO, V. PARENTI-CASTELLI, A translational 3-dof parallel manipulator (Advances in Robot Kinematics: Analysis and Control, J. Lenarčič and M. L. Husty, eds., Kluwer Academic Publishers, 49–58, 1998).

    Google Scholar 

  21. P.C. SHELDON, Three-axis machine structure that prevents rotational movement (US patent nº 5 865 063, Feb.2, 1999).

    Google Scholar 

  22. A. FRISOLI, D. CHECCACCI, F. SALSEDO, M. BERGAMASCO, Synthesis by screw algebra of translating in-parallel actuated mechanisms (Advances in Robot Kinematics, J. Lenarčič and M. M. Stanišić, eds., Kluwer Academic Publishers, pp 433–440, 2000).

    Google Scholar 

  23. L.-W. TSAI, S. JOSHI, Kinematics and optimization of a spatial 3-UPU parallel manipulator (Trans. of the ASME, J. of Mech. Design, Vol 122, pp. 439–446, 2000).

    Google Scholar 

  24. P. WENGER, D. CHABLAT, Kinematic analysis of a new parallel machine tool: the Orthoglide, Advances in Robot Kinematics (J. Lenarčič and M. M. Stanišić eds., Kluwer Academic Publishers, pp 305–314, 2000).

    Google Scholar 

  25. T. S. ZHAO, Z. HUANG, A novel three-dof translational platform mechanism and its kinematics (Proc. of the 2000 ASME Design Engineering Technical Conf., Baltimore, MD, MECH-14101, 2000).

    Google Scholar 

  26. M. CARRICATO, V. PARENTI-CASTELLI, A family of 3-dof translational parallel manipulators (Proc. of the 2001 ASME Design Engineering Technical Conf., Pittsburgh, PA, DAC-21035, 2001).

    Google Scholar 

  27. R. DI GREGORIO, Kinematics of the translational 3-URC mechanism (Proc. of the 2001 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Como, Italy, 147–152, 2001).

    Google Scholar 

  28. Q. JIN, T. L. YANG, Position analysis for a class of novel 3-dof translational parallel robot mechanisms (Proc. of the 2001 ASME Design Engineering Technical Conf., Pittsburgh, PA, DAC-21151, 2001).

    Google Scholar 

  29. X. KONG, C. M. GOSSELIN, Generation of parallel manipulators with three translational degrees of freedom based on screw theory (Proceedings of CCToMM Symposium on Mechanisms, Machines and Mechatronics, Montreal, Canada, 2001).

    Google Scholar 

  30. P. WENGER, D. CHABLAT, C. M. GOSSELIN, A comparative study of parallel kinematic architectures for machining applications (Proc. 2nd Workshop on Computational Kinematics, Seoul, Korea, pp. 249–258, 2001).

    Google Scholar 

  31. L. BARON, X. WANG, G. CLOUTIER, The isotropic conditions of parallel manipulators of Delata topology (in Advances in robot kinematics, J. Lenarčič and F. Thomas, eds, Kluwer Academic Publishers, pp. 357–366, 2002).

    Google Scholar 

  32. M. CARRICATO, V. PARENTI-CASTELLI, Singularity-free fully-isotropic translational parallel mechanisms (Int. J. of Robotics Research, 21/2: 161–174, 2002).

    Article  Google Scholar 

  33. M. CARRICATO, V. PARENTI-CASTELLI, Comparative position, workspace and singularity analyses of two isotropic translational parallel manipulators with three 4-dof legs (Proc. of MuSMe 2002, Int. Symp. on Multibody Systems and Mechatronics, Mexico City, Mexico, Paper No. M22, 2002).

    Google Scholar 

  34. M. CARRICATO, V. PARENTI-CASTELLI, Singularity free fully-isotropic translational parallel manipulators (2002 ASME Design Engineering Technical Conferences, Montreal, Canada, Sept. 29-Oct. 2, 2002, DETC2001/MECH-34301).

    Google Scholar 

  35. D. CHABLAT, PH. WENGER, J. MERLET, Workspace analysis of the Orthoglide using interval analysis (in Advances in robot kinematics, J. Lenarčič and F. Thomas, eds, Kluwer Academic Publishers, 2002, pp. 397–406).

    Google Scholar 

  36. O. COMPANY, F. PIERROT, Modelling and design issues of a 3-axis parallel machine-tool (Mechanism and Machine Theory, Vol. 37, pp. 1325–1345, 2002).

    Article  MATH  Google Scholar 

  37. R. DI GREGORIO, V. PARENTI-CASTELLI, Mobility analysis of the 3-UPU parallel mechanism assembled for a pure translational motion (ASME Journal of Mechanical Design, 124(2): pp 259–264, 2002).

    Article  Google Scholar 

  38. R. DI GREGORIO, Kinematics of a new translational parallel manipulator (Proc. of the 11th Int. Workshop on Robotics in Alpe-Adria-Danube Region, Balatonfured, Hungary, pp 249–254, 2002).

    Google Scholar 

  39. R. DI GREGORIO, V. PARENTI-CASTELLI, Mobility analysis of the 3-UPU parallel mechanism assembled for a pure translation motion (ASME J. of Mechanical Design, 124(2): pp 259–264, 2002).

    Article  Google Scholar 

  40. C. M. GOSSELIN, X. KONG, Cartesian parallel manipulators (International patent WO 02/096605 A1, 2002).

    Google Scholar 

  41. S. GUÉGAN, W. KHALIL, Dynamic Modeling of the Orthoglide (in Advances in robot kinematics, J. LENARČIČ and F. THOMAS, eds, Kluwer Academic Publishers, pp. 387–396, 2002).

    Google Scholar 

  42. Z. HUANG, Q.C. LI, Some novel lower-mobility parallel mechanisms (Proceedings of ASME Design Engineering Technical Conference, Montreal, Canada, 2002).

    Google Scholar 

  43. H. S. KIM, L.-W. TSAI, Design optimization of a Cartesian parallel manipulator (Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002).

    Google Scholar 

  44. H. S. KIM, L-W. TSAI, Evaluation of a Cartesian parallel manipulator (in Advances in robot kinematics, J. Lenarčič and F. Thomas, eds, Kluwer Academic Publishers, pp. 21–28, 2002).

    Google Scholar 

  45. X. KONG, C. M. GOSSELIN, Kinematics and singularity analysis of a novel type of 3-CRR 3-dof translational parallel manipulator (Int. J. of Robotics Research, 21/9: pp 791–798, 2002).

    Google Scholar 

  46. X. KONG, C. M. GOSSELIN, A class of 3-DOF translational parallel manipulators with linear input-output equations (Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Québec, October 3–4, pp. 25–32, 2002).

    Google Scholar 

  47. X. KONG, GOSSELIN, C. M., Type synthesis of linear translational parallel manipulators (in Advances in robot kinematics, J. Lenarčič and F. Thomas, eds, Kluwer Academic Publishers, pp. 453–462, 2002).

    Google Scholar 

  48. L. W. TSAI, S. JOSHI, Kinematic analysis of 3-dof position mechanisms for use in hybrid kinematic machines (Trans of the ASME J.of Mechanical Design, 124(2): pp 245–253, 2002).

    Google Scholar 

  49. L. W. TSAI, S. JOSHI, Jacobian analysis of limited-dof parallel manipulator (Trans of the ASME J. of Mechanical Design, 124(2): pp 254–258, 2002).

    Google Scholar 

  50. M. CALLEGARI, M. TARANTINI, Kinematic analysis of a novel translational platform (Transactions of ASME, Journal of Mechanical Design, Vol. 125, pp. 308–315, 2003).

    Google Scholar 

  51. M. CALLEGARI, P. MARZETTI, Kinematics of a family of parallel translating mechanism (Proceedings of RAAD’03, 12th International Workshop on Robotics in Alpe-Adria-Danube Region, Cassino, May 7–10, 2003).

    Google Scholar 

  52. D. CHABLAT, Ph. WENGER, Architecture Optimization of a 3-DOF Parallel Mechanism for Machining Applications, the Orthoglide (IEEE Trans. Robotics and Automation, Vol. 19(3), pp. 403–410, 2003).

    Article  Google Scholar 

  53. Z. HUANG, Q.C. LI, Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method”, Int. J. of Robotics Research, vol. 22(1), pp. 59–79, 2003.

    Google Scholar 

  54. M. CARRICATO, V. PARENTI-CASTELLI, On the topological and geometrical synthesis and classification of translational parallel mechanisms (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 4, pp. 1624–1628, China Machine Press, 2004).

    Google Scholar 

  55. D. CHABLAT, P. WENGER, J.-P. MERLET, A comparative study between two three-dof parallel kinematic machines using kinetostatic criteria and interval analysis (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 3, pp. 1209–1213, China Machine Press, 2004).

    Google Scholar 

  56. R. DI GREGORIO, V. PARENTI-CASTELLI, Comparison of 3-dof parallel manipulators based on new dynamic performance indices (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 4, pp. 1684–1688, China Machine Press, 2004).

    Google Scholar 

  57. J. M. HERVÉ, New translational parallel manipulators with extensible parallelogram (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 4, pp. 1599–1603, China Machine Press, 2004).

    Google Scholar 

  58. Z. HUANG, The kinematics and type synthesis of lower-mobility parallel robot manipulators (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 1, pp. 65–76, China Machine Press, 2004).

    MATH  Google Scholar 

  59. X. KONG, C. M. GOSSELIN, Type synthesis of analytic translational parallel manipulators (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 4, pp. 1642–1646, China Machine Press, 2004).

    Google Scholar 

  60. W. LIU, X. TANG, J. WANG, A kind of three translational-dof parallel cube-manipulator (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 4, pp. 1582–1587, China Machine Press, 2004).

    Google Scholar 

  61. D. ZLATANOV, C. M. GOSSELIN, On the kinematic geometry of the 3-RER parallel mechanisms (Proceedings of the 11th World Congress in Mechanism and Machine Science, Vol. 1, pp. 226–230, China Machine Press, 2004).

    Google Scholar 

  62. X. KONG, C. M. GOSSELIN, Type synthesis of 3-dof translational parallel manipulators based on screw theory (Journal of Mechanical Design, Vol. 126, pp. 83–92, 2004).

    Article  Google Scholar 

  63. C.M. GOSSELIN, X. KONG, S. FOUCAULT, I. A. BONEV, A fully-decoupled 3-dof translational parallel mechanism (Parallel Kinematic Machines in Research and Practice, The 4th Chemnitz Parallel Kinematics Seminar, pp.595–610, 2004).

    Google Scholar 

  64. X.-J. LIU, J. WANG, Some new parallel mechanisms containing the planar four-bar parallelogram (Int. J. of Robotics Research, 22/9: pp 717–732, 2003).

    Article  Google Scholar 

  65. G. GOGU, Evolutionary morphology: a structured approach to inventive engineering design (Invited paper, Proceedings of the 5th International Conference on Integrated Design and Manufacturing in mechanical Engineering, Bath, 5–7 April 2004).

    Google Scholar 

  66. K. Y. TSAI, K. D. HUANG, The design of isotropic 6-DOF parallel manipulators using isotropy generators (Mechanism and Machine Theory, Vol. 38, pp. 1199–1214, 2003).

    Article  MATH  Google Scholar 

  67. N. P. SUH, The Principles of Design (Oxford University Press, New York, 1990).

    Google Scholar 

  68. F. DUDITA, D. V. DIACONESCU, G. GOGU Mecanisme articulate: inventica si cinematica in abordare filogenetica (Ed. Tehnica, Bucuresti, ISBN 973-31-0119-2, 1989).

    Google Scholar 

  69. G. GOGU, P. COIFFER, A. BARRACO, Mathématiques pour la robotique: Représentation des déplacements des robots (Editions Hermès, Paris, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer

About this chapter

Cite this chapter

Gogu, G. (2004). Translational Parallel Robots with Uncoupled Motions. In: Talabă, D., Roche, T. (eds) Product Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2933-0_21

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2933-0_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2932-5

  • Online ISBN: 978-1-4020-2933-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics