Skip to main content

Antigen Presentation by Dendritic Cells and Their Significance in Anti-Neoplastic Immunotherapy

  • Chapter
Molecular Markers of Brain Tumor Cells

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Old LJ: Cancer immunology: The search for specificity — G.H.A. Clowes Memorial Lecture, Cancer Res 41: 361–375, 1981.

    CAS  PubMed  Google Scholar 

  2. Shinitzky M, Skornick Y: Cancer immunotherapy with autologous and allogeneic vaccines: A practical overview. EORTC Genitourinary Group Monograph 9: Basic Research and Treatment of Renal Cell Carcinoma Metastasis, Vol.348, Wiley-Liss Inc., pp. 95–125, 1990.

    CAS  Google Scholar 

  3. Altman LK: Who Goes First? New York, Random House, 1986, p.287.

    Google Scholar 

  4. Domagk G: Die Bedeutung korpereigener Abwehrkrafte fur die Ansiedlung von Geschwulstzellen. Zschr Krebsforsch 56: 247–252, 1949.

    Google Scholar 

  5. Bjorklund B: Early data promising on cancer vaccines (interview). Med World News p. 48, 1965.

    Google Scholar 

  6. von Leyden E, Blumenthal F: Vorlaufige Mittheilungen uber einige Ergebnisse der Krebsforschung auf der I. medizinischen Klinik. Deutsche Med Wschr 28: 637–638, 1902.

    Google Scholar 

  7. Moore GE: Cancer immunity: fact or fiction? Texas Med 64: 54–59, 1968.

    CAS  Google Scholar 

  8. Mendoza CB Jr, Moore GE, Watna AL, Hiramoto R, Jurand J: Immunologic response following homologous transplantation of cultured human tumor cells in patients with malignancy. Surgery 64: 897–900, 1968.

    PubMed  Google Scholar 

  9. Shulman S, Yantorno C, Bronson P: Cryo-immunology: a method of immunization to autologous tissue. Proc Soc Exp Biol Med 124: 658–661, 1967.

    CAS  PubMed  Google Scholar 

  10. Moore FT, Blackwood J, Sanzenbacher L, Pace WG: Cryotherapy for malignant tumors. Immunologic response. Arch Surgery 96: 527–529, 1968.

    CAS  Google Scholar 

  11. Hellstrom I, Hellstrom KE: Tumor vaccines—a reality at last? J Immunother 21: 119–126, 1998.

    CAS  PubMed  Google Scholar 

  12. Hellstrom KE, Hellstrom I: Oncogene-associated tumor antigens as targets for immunotherapy. FASEB J 3:1715–1722, 1989.

    CAS  PubMed  Google Scholar 

  13. Lloyd KO, Old LJ: Human monoclonal antibodies to glycolipids and other carbohydrate antigens: dissection of the humoral immune response in cancer patients. Cancer Res 49: 3445–3451, 1989.

    CAS  PubMed  Google Scholar 

  14. Bodey B, Zeltzer PM, Saldivar V, Kemshead J: Immunophenotyping of childhood astrocytomas with a library of monoclonal antibodies. Int J Cancer 45: 1079–1087, 1990.

    CAS  PubMed  Google Scholar 

  15. Miller FR: Intratumor immunologic heterogeneity. Cancer Metastasis Rev 1: 319–334, 1982.

    CAS  PubMed  Google Scholar 

  16. Hanna MG Jr, Zbar B, Rapp HJ: Histopathology of tumor regression after intralesional injection of Mycobacterium bovis. II. Comparative effects of vaccinia virus, oxazolone, and turpentine. J Natl Cancer Inst 48: 1697–1703, 1972.

    CAS  PubMed  Google Scholar 

  17. Mitchison NA: Immunologic approach to cancer. Transplant Proc 11: 92–103, 1970.

    Google Scholar 

  18. Berd D, Murphy G, Maguire HC Jr, Mastrangelo MJ: Immunization with haptenized, autologous tumor cells induces inflammation of human melanoma metastases. Cancer Res 51: 2731–2734, 1991.

    CAS  PubMed  Google Scholar 

  19. Maguire HC Jr, Ettore VL: Enhancement of dinitrochlorobenzene (DNCB) contact sensitization by cyclophosphamide in the guinea pig. J Invest Dermatol 48: 39–42, 1967.

    CAS  PubMed  Google Scholar 

  20. Schwartz A, Askenase PW, Gershon RK: Regulation of delayed-type hypersensitivity reactions by cyclophosphamide-sensitive T cells. J Immunol 121: 1573–1577, 1978.

    CAS  PubMed  Google Scholar 

  21. Yoshida S, Nomoto K, Himeno K, Takeya K: Immune response to syngeneic or autologous testicular cells in mice. I. Augmented delayed footpad reaction in cyclophosphamide-treated mice. Cancer Res 41: 2163–2167, 1981.

    Google Scholar 

  22. Berd D, Mastrangelo MJ, Engstrom PF, Paul A, Maguire H: Augmentation of the human immune response by cyclophosphamide. Cancer Res 42: 4862–4866, 1982.

    CAS  PubMed  Google Scholar 

  23. Gross L: Experimental immunization against implantation of cancer. Quart Bull Polish Inst Arts and Sc America 1: 418–430, 1943.

    Google Scholar 

  24. Sinkovics JG, Howe CD: Superinfection of tumors with viruses. Experientia 25: 733–734, 1969.

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi H: Viral xenogenization of intact tumor cells. Adv Cancer Res 30: 279–299, 1979.

    CAS  PubMed  Google Scholar 

  26. Schirrmacher V, Heicappell R: Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. II. Establishment of specific systemic anti-tumor immunity. Clin Exp Metastasis 5: 147–156, 1987.

    Article  CAS  PubMed  Google Scholar 

  27. Wagner H, Rollinghoff M: In vitro induction of tumor-specific immunity. I. Parameters of activation and cytotoxic reactivity of mouse lymphoid cells, immunized in vitro against syngeneic and allogeneic plasma cell tumors. J Exp Med 138: 1–15, 1973.

    CAS  PubMed  Google Scholar 

  28. Rollinghoff M: Secondary cytotoxic tumor immune response induced in vitro. J Immunol 112: 1718–1725, 1974.

    CAS  PubMed  Google Scholar 

  29. Flood PM, Kripke ML, Rowley DA, Schreiber H: Suppression of tumor rejection by autologous anti-idiotypic immunity. Proc Natl Acad Sci USA 77: 2209–2213, 1980.

    CAS  PubMed  Google Scholar 

  30. George KC, van Beuningen D, Streffer C: Growth, cell proliferation and morphological alterations of a mouse mammary carcinoma after exposure to x rays and hyperthermia. Rec Res Cancer Res 107: 113–117, 1988.

    CAS  Google Scholar 

  31. George RE, Loudon WG, Moser RP, Bruner JM, Stock PA, Grimm EA: In vitro cytolysis of primitive neuroectodermal tumors of the posterior fossa (medulloblastoma) by lymphokine-activated killer cells. J Neurosurgery 69: 403–409, 1988.

    CAS  Google Scholar 

  32. Ghosh AK, Cerny T, Wagstaff J, Thatcher N, Moore M: Effect of in vivo administration of interferon gamma on expression of MHC products and tumor associated antigens in patients with metastatic melanoma. Eur J Cancer Clin 11: 1637–1643, 1989.

    Google Scholar 

  33. Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau H, Lind S: Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res 48: 5883–5893, 1988.

    CAS  PubMed  Google Scholar 

  34. Mitchell MS, Harel W, Kempf RA, Hu E, Kan-Mitchell J, Boswell WD, Dean G, Stevenson L: Active-specific immunotherapy for melanoma. J Clin Oncol 8: 856–869, 1990.

    CAS  PubMed  Google Scholar 

  35. McCune CS, Marquis D.M: Interleukin 1 as an adjuvant for active specific immunotherapy in a murine tumor model. Cancer Res 50: 1212–1215, 1990.

    CAS  PubMed  Google Scholar 

  36. Sinkovics JG: Suppressor cells in human malignant disease. Brit Med J 1: 1072–1073, 1976.

    CAS  PubMed  Google Scholar 

  37. Wiseman CL, Rao VS, Kennedy PS, Presant CA, Smith JD, McKenna RJ: Clinical responses with active specific intralymphatic immunotherapy for cancer — a phase I–II trial. West J Med 151: 283–288, 1989.

    CAS  PubMed  Google Scholar 

  38. Hellstrom KE, Hellstrom I: Novel approaches to therapeutic cancer vaccines. Expert Rev Vaccines 2: 517–532, 2003.

    Article  CAS  PubMed  Google Scholar 

  39. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL: Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61: 842–847, 2001.

    CAS  PubMed  Google Scholar 

  40. Zeltzer PM, Moilanen B, Yu JS, Black KL: Immunotherapy of malignant brain tumors in children and adults: from theoretical principles to clinical application. Childs Nerv Syst 15: 514–528, 1999.

    Article  CAS  PubMed  Google Scholar 

  41. Davis EJ, Foster TD, Thomas WE: Cellular forms and functions of brain microglia. Brain Res Bull 34: 73–78, 1994.

    Article  CAS  PubMed  Google Scholar 

  42. Krivit W, Sung JH, Shapiro EG, Lockman L: Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant 4: 385–392, 1995.

    CAS  PubMed  Google Scholar 

  43. Walker PR, Sikorska M: New aspects of the mechanism of DNA fragmentation in apoptosis. Biochem Cell Biol 75: 287–299, 1997.

    Article  CAS  PubMed  Google Scholar 

  44. Walker PR, Saas P, Dietrich P-Y: Role of Fas ligand (CD95L) in immune escape: the tumor cells strikes back. J Immunol 158: 4521–4524, 1997.

    CAS  PubMed  Google Scholar 

  45. Mule JJ, Schwarz SL, Roberts AB, Sporn MB, Rosenberg SA: Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother 26: 95–100, 1988.

    CAS  PubMed  Google Scholar 

  46. Sporn MB, Roberts AB, Wakefield LM, Assoian RK: Transforming growth factor-beta: biological function and chemical structure. Science 233: 532–534, 1986.

    CAS  PubMed  Google Scholar 

  47. Rivoltini L, Arienti F, Orazi A, Cefalo G, Gasparini M, Gambacorti-Passerini C, Fossati-Bellani F, Parmiano G: Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunol Immunother 34: 241–251, 1992.

    Article  CAS  PubMed  Google Scholar 

  48. Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K: CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349: 71–74, 1991.

    Article  CAS  PubMed  Google Scholar 

  49. Wu L, Li CL, Shortman K: Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184: 903–911, 1996.

    CAS  PubMed  Google Scholar 

  50. Shortman K, Caux C: Dendritic cells development: multiple pathways to nature’s adjuvants. Stem Cells 15: 409–419, 1997.

    CAS  PubMed  Google Scholar 

  51. Shortman K, Wu L: Parentage and heritage of dendritic cells. Blood 97: 3325, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. Wu L, D’Amico A, Hochrein H, O’Keeffe M, Shortman K, Lucas K: Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98: 3376–3382, 2001.

    Article  CAS  PubMed  Google Scholar 

  53. Shortman K, Liu YJ: Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161, 2002.

    Article  CAS  PubMed  Google Scholar 

  54. O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, Wu L, Lahoud MH, Henri S, Scott B, Hertzog P, Tatarczuch L, Shortman K: Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmocytoid pre-DC2 and CD11+ DC1 precursors. Blood 101: 1453–1459, 2003.

    CAS  PubMed  Google Scholar 

  55. Tan PS, Gavin AL, Barnes N, Sears DW, Vremec D, Shortman K, Amigorena S, Mottram PL, Hogarth PM: Unique monoclonal antibodies define expression of FcgammaRI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells. J Immunol 170: 2549–2556, 2003.

    CAS  PubMed  Google Scholar 

  56. Kim YJ, Broxmeyer HE: 4-IBB ligand stimulation enhances myeloid dendritic cell maturation from human umbilical cord blood CD34+ progenitor cells. J Hematother Stem Cell Res 11: 895–903, 2002.

    Article  CAS  PubMed  Google Scholar 

  57. Anjuere F, Martinez Del Hoyo G, Martin P, Ardavin C: Langerhans cells develop from a lymphoid-committed precursor. Blood 96: 1633–1637, 2000.

    CAS  PubMed  Google Scholar 

  58. Bednar B: Dendritic resident cells and their immunohistologic determination. Ceskoslov Patologie 31: 9–16, 1995.

    CAS  Google Scholar 

  59. Paglia P, Girolomoni G, Robbiati F, Granucci F, Ricciardi-Castagnoli P: Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses In Vivo. J Exp Med 178: 1893–1901, 1993.

    Article  CAS  PubMed  Google Scholar 

  60. Lenz A, Heine M, Schuler G, Romani N: Human and murine dermis contain dendritic cells, Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 92: 2587–2596, 1993.

    CAS  PubMed  Google Scholar 

  61. Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142–1162, 1973.

    Article  CAS  PubMed  Google Scholar 

  62. Markgraf R, von Gaudecker B, Müller-Hermelink HK: The development of the human lymph node. Cell Tissue Res 225: 387–413, 1982.

    Article  CAS  PubMed  Google Scholar 

  63. Witmer MD, Steinman RM: The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light-microscopic immunocytochemical studies of mouse spleen, lymph node and Peyer’s patch. Am J Anat 170: 4655–4681, 1984.

    Article  Google Scholar 

  64. Bodey B, Bodey B Jr, Kaiser HE: Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo 11: 351–370, 1997.

    CAS  PubMed  Google Scholar 

  65. Gaudecker B von, Müller-Hermelink HK: Ontogeny and organization of the stationary non-lymphoid cells in the human thymus. Cell Tissue Res 207: 287–306, 1980.

    Article  Google Scholar 

  66. Kaiserling E, Stein H, Müller-Hermelink HK: Interdigitating reticulum cells in the human thymus. Cell Tiss Res 155: 47–55, 1974.

    Article  CAS  Google Scholar 

  67. Crivellato E, Mallardi F, Basa M, Zweyer M: Osmium-zinc iodide reacts with interdigitating cells in the mouse lymph nodes and spleen. Z mikroskop-anat Forsch 104: 476–484, 1990.

    CAS  Google Scholar 

  68. Crivellato E, Baldini G, Basa M, Fusaroli P: The three-dimensional structure of interdigitating cells. Italian J Anat Embryol 98: 243–258, 1993.

    CAS  Google Scholar 

  69. Kelly RH, Balfour BM, Armstrong JA, Griffiths S: Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat Rec 190: 5–22, 1978.

    CAS  PubMed  Google Scholar 

  70. Kamperdijk EWA, de Leeuw JHS, Hoefsmit ECM: Lymph node macrophages and reticulum cells in the immune response; the secondary response to paratyphoid vaccine. Cell Tissue Res 227: 277–290, 1982.

    Article  CAS  PubMed  Google Scholar 

  71. Fossum S, Vaalard JL: The architecture of rat lymph nodes. I. Combined light and electronmicroscopy of lymph node cell types. Anat Embryol 167: 229–246, 1983.

    Article  CAS  PubMed  Google Scholar 

  72. Hart DNJ, Fabre JW: Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissue of rat heart and other tissues, but not brain. J Exp Med 154: 347–361, 1981.

    Article  CAS  PubMed  Google Scholar 

  73. Hart DNJ, McKenzie JL: Interstitial dendritic cells. Int Rev Immunol 6: 128–149, 1990.

    Google Scholar 

  74. Klug H, Mager B: Ultrastructure and function of interdigitating cells in the guinea pig thymus. Acta Morph Acad Sci Hung 27: 11–9, 1979.

    CAS  Google Scholar 

  75. Klug H: Elektronenmikroskopische Untersuchungen zur Phagocytose strahlengeschädigter Lymphozyten im Thymus von Ratten. Z Zellforsch 68: 43–56, 1965.

    Article  CAS  PubMed  Google Scholar 

  76. Duijvestijn AM, Kamperdijk EW: Birbeck granules in interdigitating cells of thymus and lymph node. Cell Biol Int Rep 6: 655, 1982.

    Article  CAS  PubMed  Google Scholar 

  77. Duijvestijn AM, Sminia T, Kohler YG, Janse EM, Hoefsmit EC: Rat thymus micro-environment: an ultrastructural and functional characterization. Adv Exp Med Biol 149: 441–446, 1982.

    CAS  PubMed  Google Scholar 

  78. Duijvestijn AM, Kohler YG, Hofsmit EC: Interdigitating cells and macrophages in the acute involuting rat thymus. An electron-microscopic study on phagocytic activity and population development. Cell Tiss Res 224: 291–301, 1982.

    Article  CAS  Google Scholar 

  79. Miyazawa T, Sato C, Kojima K: Thymic phagocytosis and reduction in the negative surface charge of thymocytes after X irradiation. Radiat Res 79: 622–629, 1979.

    CAS  PubMed  Google Scholar 

  80. Higley HR, O’Morchoe CC: Morphometric analysis of thymic medullary non-lymphoid cell changes during postnatal development. Dev Comp Immunol 8: 711–719, 1984.

    CAS  PubMed  Google Scholar 

  81. Ewijk W van, Verzijden JH, Kwast TH van der, Luijcx-Meijer SW: Reconstitution of the thymus dependent area in the spleen of lethally irradiated mice. A light and electron microscopical study of the T-cell microenvironment. Cell Tiss Res 149: 43–60, 1974.

    Article  Google Scholar 

  82. Heusermann U, Stutte HJ, Müller-Hermelink HK: Interdigitating cells in the white pulp of the human spleen. Cell Tiss Res 153: 415–417, 1974.

    Article  CAS  Google Scholar 

  83. Ferreira-Marques J: Systema sensitivum intra-epidermicum. Die Langerhansschen Zellen als Rezeptoren des hellen Schmerzes: Doloriceptores. Arch Dermatol Syph 193: 191–250, 1951.

    CAS  Google Scholar 

  84. Niebauer G: Über die interstitiellen Zellen der Haut. Hautarzt 7: 123–126, 1956.

    CAS  PubMed  Google Scholar 

  85. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; Tuberkolosen der Haut. Arch Klin Exp Dermatol 202: 466–495, 1956.

    CAS  PubMed  Google Scholar 

  86. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; tertiäre Syphilide der Haut. Arch Klin Exp Dermatol 202: 496–508, 1956.

    CAS  PubMed  Google Scholar 

  87. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; Leishmaniosis cutis. Arch Klin Exp Dermatol 202: 509–517, 1956.

    CAS  PubMed  Google Scholar 

  88. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; Lepra. Arch Klin Exp Dermatol 202: 518–555, 1956.

    CAS  PubMed  Google Scholar 

  89. Niebauer G: Über die Dendritenzellen bei Vitiligo. Dermatologica 130: 317–324, 1965.

    CAS  PubMed  Google Scholar 

  90. Niebauer G, Sekido N: Über die Dendritenzellen der Epidermis. Eine Studie über die Langerhans-Zellen in der normalen und ekzematösen Haut des Meerschweinchens. Arch Klin Exp Dermatol 222: 23–42, 1965.

    Article  CAS  PubMed  Google Scholar 

  91. Masson P: My conception of cellular nevi. Cancer 4: 9–38, 1951.

    CAS  PubMed  Google Scholar 

  92. Billingham RE, Medawar PB: “Desensitization” to skin homografts by injections of donor skin extracts. Ann Surg 137: 444–449, 1953.

    CAS  PubMed  Google Scholar 

  93. Fan J, Hunter R: Langerhans cells and the modified technic of gold impregnation by Ferreira-Marques. J Invest Dermatol 31: 115–121, 1958.

    CAS  PubMed  Google Scholar 

  94. Fan J, Schoenfeld RJ, Hunter R: A study of the epidermal clear cells with special references to their relationship to the cells of Langerhans. J Invest Dermatol 32: 445–450, 1959.

    CAS  PubMed  Google Scholar 

  95. Billingham RE, Silvers WK: Re-investigation of the possible occurrence of maternally induced tolerance in guinea pigs. J Exp Zool 160: 221–224, 1965.

    Article  CAS  PubMed  Google Scholar 

  96. Billingham RE, Silvers WK: Some biological differences between thymocytes and lymphoid cells. Wistar Inst Sympos Monogr 2: 41–51, 1964.

    CAS  Google Scholar 

  97. Schuler G, Steinman RM: Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161: 526–546, 1985.

    Article  CAS  PubMed  Google Scholar 

  98. Witmer-Pack MD, Olivier W, Valinsky J, Schuler G, Steinman RM: Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med 166: 1484–1498, 1987.

    Article  CAS  PubMed  Google Scholar 

  99. Strunk D, Rappersberger K, Egger C, Strobl H, Kromer E, Elbe A, Maurer D, Stingl G: Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood 87: 1292–1302, 1996.

    CAS  PubMed  Google Scholar 

  100. Ardavin C, Wu L, Li CL, Shortman K: Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362: 761–763, 1993.

    Article  CAS  PubMed  Google Scholar 

  101. Galy A, Travis M, Cen D, Chen B: T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3: 459–473, 1995.

    Article  CAS  PubMed  Google Scholar 

  102. Marquez C, Trigueros C, Fernandez E, Toribio ML: The development of T and non-T cell lineages from CD34+ human thymic precursors can be traced by the differential expression of CD44. J Exp Med 181: 475–483, 1995.

    Article  CAS  PubMed  Google Scholar 

  103. Martinez-Caceres E, Jaleco AC, Res P, Noteboom E, Weijer K, Spits H: CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87: 5196–5206, 1996.

    PubMed  Google Scholar 

  104. Langerhans P: Über die Nerven der menschlichen Haut. Virchow’s Arch A (Pathol Anat) 44: 325–338, 1868.

    Google Scholar 

  105. Silberberg I: Apposition of mononuclear cells to Langerhans cells in contact allergic reactions: an ultrastructural study. Acta Dermatol Venereol 53: 1–12, 1973.

    CAS  Google Scholar 

  106. Birbeck MS, Breathnach AS, Everall JD: An electron microscope study of basal melanocytes and high-level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol 37: 51–64, 1961.

    Google Scholar 

  107. Silberberg I, Baer RL, Rosenthal SA: Circulating Langerhans cells in a dermal vessel. Acta Dermato-Venereol 54: 81–85, 1974.

    CAS  Google Scholar 

  108. Silberberg-Sinakin I, Fedorko ME, Baer RL, Rosenthal SA, Berezowsky V, Thorbecke GJ: Langerhans cells: target cells in immune complex reactions. Cell Immunol 32: 400–416, 1977.

    CAS  PubMed  Google Scholar 

  109. Silberberg-Sinakin I, Gigli I, Baer RL, Thorbecke GJ: Langerhans cells: role in contact hypersensitivity and relationship to lymphoid dendritic cells and to macrophages. Immunol Rev 53: 203–232, 1980.

    CAS  PubMed  Google Scholar 

  110. Bucana CD, Munn CG, Song MJ, Dunner K Jr, Kripke ML: Internalization of Ia molecules into Birbeck granule-like structures in murine dendritic cells. J Invest Dermatol 99: 365–373, 1992.

    Article  CAS  PubMed  Google Scholar 

  111. Henkes W, Syha J, Reske K: Nucleotide sequence of rat invariant gamma chain cDNA clone pLRgamma34.3. Nucleic Acids Res 16: 11822, 1988.

    CAS  PubMed  Google Scholar 

  112. Bakke O, Dobberstein B: MHC class II associated invariant chain contains a sorting signal for endosomal compartments. Cell 63: 707–716, 1990.

    Article  CAS  PubMed  Google Scholar 

  113. Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid SL, Quaranta V, Peterson PA: Intracellular transport of class II MHC molecules directed by invariant chain. Nature 348: 600–605, 1990.

    Article  CAS  PubMed  Google Scholar 

  114. Naujokas MF, Morin M, Anderson MS, Peterson M, Miller J: The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 74: 257–268, 1993.

    Article  CAS  PubMed  Google Scholar 

  115. Hashimoto K, Tarnowski WM: Some new aspects of the Langerhans cell. Arch Dermatol 97: 450–464, 1968.

    Article  CAS  PubMed  Google Scholar 

  116. Hashimoto K: Langerhans’ cell granule. An endocytotic organelle. Arch Dermatol 104: 148–160, 1971.

    CAS  PubMed  Google Scholar 

  117. Olah I, Dunay C, Rohlich P, Toro I: A special type of cells in the medulla of the rat thymus. Acta Biol Acad Sci Hung 19: 97–113, 1968.

    CAS  PubMed  Google Scholar 

  118. Haelst U van: Light and electron microscopic study of the normal and pathological thymus of the rat. I. The normal thymus. Zeitschr Zellforsch Mikroskop Anat 77: 534–553, 1967.

    Google Scholar 

  119. Haelst U van: Light and electron microscopic study of the normal and pathological thymus of the rat. II. The acute thymic involution. Zeitschr Zellforsch Mikroskop Anat 80: 153–182, 1967.

    Google Scholar 

  120. Warchol JB, Brelinska R, Jaroszewski J: Granules of Langerhans cells in the thymus contain gold. Experientia 40: 75–76, 1984.

    Article  CAS  PubMed  Google Scholar 

  121. Zelickson AS: The Langerhans cell. J Invest Dermatol 44: 201–212, 1965.

    CAS  PubMed  Google Scholar 

  122. Breathnach AS, Wyllie LM: Electron microscopy of melanocytes and Langerhans cells in human fetal epidermis at fourteen weeks. J Invest Dermatol 44: 51–60, 1965.

    CAS  PubMed  Google Scholar 

  123. Wolff K: The fine structure of the Langerhans cell granule. J Cell Biol 35: 468–473, 1967.

    Article  CAS  PubMed  Google Scholar 

  124. Wolff K: The Langerhans cell. Curr Prob Dermatol 4: 79–145, 1971.

    Google Scholar 

  125. Plzak J, Holikova Z, Dvorankova B, Smetana K Jr, Betka J, Hercogova J, Saeland S, Bovin NV, Gabius HJ: Analysis of binding of mannosides in relation to langerin (CD207) in Langerhans celld of normal and transformed epithelia. Histochem J 34: 247–253, 2002.

    CAS  PubMed  Google Scholar 

  126. Rowden G: Immuno-electron microscopic studies of surface receptors and antigens of human Langerhans cells. Br J Dermatol 97: 593–608, 1977.

    CAS  PubMed  Google Scholar 

  127. Rowden G, Lewis MG, Sullivan AK: Ia antigen expression on human epidermal Langerhans cells. Nature 268: 247–248, 1977.

    Article  CAS  PubMed  Google Scholar 

  128. Rowden G: Expression of Ia antigens on Langerhans cells in mice, guinea pigs, and man. J Invest Dermatol 75: 22–31, 1980.

    Article  CAS  PubMed  Google Scholar 

  129. Veerman AJ: On the interdigitating cells in the thymus-dependent area of the rat spleen: a relation between the mononuclear phagocyte system and T-lymphocytes. Cell Tiss Res 148: 247–257, 1974.

    Article  CAS  Google Scholar 

  130. Nossal GJ, Abbot A, Mitchell J, Lummus Z: Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. J Exp Med 127: 277–290, 1968.

    CAS  PubMed  Google Scholar 

  131. Steinman RM, Witmer MD: Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 75: 5132–5136, 1978.

    CAS  PubMed  Google Scholar 

  132. Berman B, Gigli I: Complement receptors on guinea pig epidermal Langerhans cells. J Immunol 124: 685–690, 1980.

    CAS  PubMed  Google Scholar 

  133. Hammerling GJ, McDevitt HO: Antigen-binding structures on the surface of T lymphocytes. Israel J Med Sci 11: 1331–1341, 1975.

    CAS  PubMed  Google Scholar 

  134. Klein J, Hauptfeld V: Ia antigens: their serology, molecular relationships, and their role in allograft reactions. Transplant Rev 30: 83–100, 1976.

    CAS  PubMed  Google Scholar 

  135. Shreffler DC, David CS: The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol 20: 125–195, 1975.

    CAS  PubMed  Google Scholar 

  136. Nagao S, Inaba S, Ijima S: Langerhans cells at the sites of vaccinia virus inoculation. Arch Dermatol Res/Archiv fur Dermatol Forsch 256: 23–31, 1976.

    CAS  Google Scholar 

  137. Seite S, Zucchi H, Moyal D, Tison S, Compan D, Christiaens F, Gueniche A, Fourtanier A: Alterations in human epidermal Langerhans cells by ultraviolet radiation: quantitative and morphological study. Br J Dermatol 148: 291–299, 2003.

    Article  CAS  PubMed  Google Scholar 

  138. Katz SI, Tamaki K, Sachs DH: Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282: 324–326, 1979.

    Article  CAS  PubMed  Google Scholar 

  139. Frelinger JG, Hood L, Hill S, Frelinger JA: Mouse epidermal Ia molecules have a bone marrow origin. Nature 282: 321–323, 1979.

    Article  CAS  PubMed  Google Scholar 

  140. Rausch E, Kaiserling E, Goos M: Langerhans cells and interdigitating reticulum cells in the thymus-dependent region in human dermatopathic lymphadenitis. Virchows Archiv — B Cell Pathol 25: 327–343, 1977.

    CAS  Google Scholar 

  141. Hoffman-Fezer G, Rodt H, Thierfelder S: Immunohistochemical identification of T-and B-lymphocytes delineated by the unlabeled antibody enzyme method. II. Anatomical distribution of T-and B-cells in lymphoid organs of nude mice. Beitr Pathol 161: 17–26, 1977.

    Google Scholar 

  142. Hoffman-Fezer G, Rodt H, Götze D, Thierfelder S: Anatomical distribution of T and B lymphocytes identified by immunohistochemistry in the chicken spleen. Int Arch Allergy Appl Immunol 55: 86–95, 1977.

    Google Scholar 

  143. Cocchia D, Miani N: Immunocytochemical localization of the brain-specific S-100 protein in the pituitary gland of adult rat. J Neurocytol 9: 771–782, 1980.

    Article  CAS  PubMed  Google Scholar 

  144. Baes M, Allaerts W, Denef C: Evidence for functional communication between folliculo-stellate cells and hormone-secreting cells in perfused anterior pituitary cell aggregates. Endocrinology 120: 685–691, 1987.

    CAS  PubMed  Google Scholar 

  145. Vankelecom H, Carmeliet P, van Damme J, Billiau A, Denef C: Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 49: 102–106, 1989.

    CAS  PubMed  Google Scholar 

  146. Nakajima T, Yamaguchi H, Takahashi K: S-100 protein in folliculo-stellate cells of the rat of the pituitary anterior lobe. Brain Res 191: 523–531, 1980.

    Article  CAS  PubMed  Google Scholar 

  147. Allaerts W, Denef C: Regulatory activity and topological distribution of folliculo-stellate cells in rat anterior pituitary cell aggregates. Neuroendocrinology 49: 409–418, 1989.

    CAS  PubMed  Google Scholar 

  148. Allaerts W, Jeucken PHM, Hofland LJ, Drexhage HA: Morphological, immunohistochemical and functional homologies between pituitary folliculo-stellate cells and lymphoid dendritic cells. Acta Endocrinol 125: 92–97, 1991.

    PubMed  Google Scholar 

  149. Carmeliet P, Vankelecom H, van Damme J, Billiau A, Denef C: Release of interleukin-6 from anterior pituitary cell aggregates: developmental pattern and modulation by glucocorticoids and forskolin. Neuroendocrinology 53: 29–34, 1991.

    CAS  PubMed  Google Scholar 

  150. Allaerts W, Jeucken PHM, Bosman FT, Drexhage HA: Relationship between dendritic cells and folliculo-stellate cells in the pituitary: immunohistochemical comparison between mouse, rat and human pituitaries. In: Dendritic Cells in Fundamental and Clinical Immunology (Kamperdijk et al., eds), Plenum Press, New York, pp 637–642, 1993.

    Google Scholar 

  151. Takahashi K, Yamaguchi H, Ishizeki J, Nakajima T, Nakazato Y: Immunohistochemical and immunoelectron microscopic localization of S-100 protein in the interdigitating reticulum cells of the human lymph node. Virchows Arch [Cell Pathol 37: 125–135, 1981.

    CAS  Google Scholar 

  152. Allaerts W, Jeucken PHM, Bosman FT, Drexhage HA: Relationship between dendritic cells and folliculo-stellate cells in the pituitary: immunohistochemical comparison between mouse, rat and human pituitaries. Adv Exp Med Biol 329: 637–642, 1993.

    CAS  PubMed  Google Scholar 

  153. Jones TH, Kennedy RL: Cytokines and hypothalamic-pituitary function. Cytokine 5: 531–538, 1993.

    CAS  PubMed  Google Scholar 

  154. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20: 621–667, 2002.

    Article  CAS  PubMed  Google Scholar 

  155. Steinman RM: Dendritic cells and immune-based therapies. Exp Hematol 24: 859–862, 1996.

    CAS  PubMed  Google Scholar 

  156. Robinson JH, Delvig AA: Diversity in MHC class II antigen presentation. Immunology 105: 252–262, 2002.

    Article  CAS  PubMed  Google Scholar 

  157. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML: T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20: 561–567, 1999.

    Article  CAS  PubMed  Google Scholar 

  158. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811, 2000.

    Article  CAS  PubMed  Google Scholar 

  159. Lutz MB, Assmann CU, Girolomoni G, Ricciardi-Castagnoli P: Different cytokines regulate antigen uptake and presentation of a precursor dendritic cell line. Eur J Immunol 26: 586–594, 1996.

    CAS  PubMed  Google Scholar 

  160. Aderem A, Ulevitch RJ: Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787, 2000.

    Article  CAS  PubMed  Google Scholar 

  161. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM: Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166: 249–255, 2001.

    CAS  PubMed  Google Scholar 

  162. Jurgens M, Wollenberg A, Hanau D, de la Salle H, Bieber T: Activation of human epidermal Langerhans cells by engagement of the high affinity receptor for IgE, Fc epsilon RI. J Immunol 155: 5184–5189, 1995.

    CAS  PubMed  Google Scholar 

  163. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S: Fcgamma receptormediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189: 371–380, 1999.

    Article  CAS  PubMed  Google Scholar 

  164. Geissmann F, Launay P, Pasquier B, Lepelletier Y, Leborgne M, Lehuen A, Brousse N, Monteiro RC: A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J Immunol 166: 346–352, 2001.

    CAS  PubMed  Google Scholar 

  165. Thery C, Amigorena S: The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 13: 45–51, 2001.

    CAS  PubMed  Google Scholar 

  166. Galluci S, Matzinger P: Danger signals: SOS to the immune system. Curr Opin Immunol 13: 114–119, 2001.

    Google Scholar 

  167. Steinman RM, Nussenzweig MC: Dendritic cells: features and functions. Immunol Rev 53: 127–148, 1980.

    CAS  PubMed  Google Scholar 

  168. Steinman RM: The dendritic cell system and its role in immunogenicity. Annual Rev Immunol 9: 271–296, 1991.

    CAS  Google Scholar 

  169. Monaco JJ: Structure and function of genes in the MHC class II region. Curr Opin Immunol 5: 17–20, 1993.

    Article  CAS  PubMed  Google Scholar 

  170. Neefjes JJ, Momburg F: Cell biology of antigen presentation. Curr Opin Immunol 5: 27–34, 1993.

    Article  CAS  PubMed  Google Scholar 

  171. Germain RN: MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76: 287–299, 1994.

    Article  CAS  PubMed  Google Scholar 

  172. Ossevoort MA, Kleijmeer MJ, Nijman HW, Geuze HJ, Kast WM, Melief CJM: Functional and ultrastructural aspects of antigen processing by dendritic cells. Adv Exp Med Biol 378: 227–231, 1995.

    CAS  PubMed  Google Scholar 

  173. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045, 1994.

    CAS  PubMed  Google Scholar 

  174. Nanada NK, Sercarz E: A truncated T cell receptor repertoire reveals underlying immunogenicity of an antigenic determinant. J Exp Med 184: 1037–1043, 1996.

    Google Scholar 

  175. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5: 677–685, 1999.

    CAS  PubMed  Google Scholar 

  176. Pardoll DM: Inducing autoimmune disease to treat cancer. Proc Natl Acad Sci USA 96: 5340–5342, 1999.

    Article  CAS  PubMed  Google Scholar 

  177. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676, 2000.

    CAS  PubMed  Google Scholar 

  178. Ribas A, Butterfield LH, Glaspy JA, Economou JS: Cancer immunotherapy using genemodified dendritic cells. Curr Gene Ther 2: 57–78, 2002.

    CAS  PubMed  Google Scholar 

  179. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478–480, 1998.

    CAS  PubMed  Google Scholar 

  180. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478, 1998.

    Article  CAS  PubMed  Google Scholar 

  181. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML: The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221–227, 1999.

    Article  CAS  PubMed  Google Scholar 

  182. Malissen B: Dancing the immunological two-step. Science 285: 207–208, 1999.

    Article  CAS  PubMed  Google Scholar 

  183. Wulfing C, Davis MM: A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282: 2266–2269, 1998.

    CAS  PubMed  Google Scholar 

  184. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y: TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 189: 1025–1031, 1999.

    CAS  PubMed  Google Scholar 

  185. Lu Z, Yuan L, Zhou X, Sotomayor E, Levitsky HI, Pardoll DM: CD40-independent pathways of T cell help for priming of CD8+ cytotoxic T lymphocytes. J Exp Med 191: 541–550, 2000.

    Article  CAS  PubMed  Google Scholar 

  186. Chinnaiyan AM, Hanna WL, Orth K, Duan H, Poirier GG, Froelich CJ, Dixit VM.: Cytotoxic T-cell-derived granzyme B activates the apoptotic protease ICE-LAP3. Curr Biol 6: 897–899, 1996.

    Article  CAS  PubMed  Google Scholar 

  187. Froelich CJ, Dixit VM, Yang X: Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases. Immunol Today 19: 30–36, 1998.

    Article  CAS  PubMed  Google Scholar 

  188. Inaba K, Swiggard WJ, Inaba M, Meltzer J, Mirza A, Sasagawa T, Nussenzweig MC, Steinman RM: Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. I. Expression on dendritic cells and other subsets of mouse leukocytes. Cell Immunol 163: 148–156, 1995.

    Article  CAS  PubMed  Google Scholar 

  189. Guo M, Gong S, Maric S, Misulovin Z, Pack M, Mahnke K, Nussenzweig MC, Steinman RM: A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum Immunol 61: 729–738, 2000.

    Article  CAS  PubMed  Google Scholar 

  190. Kato M, Neil TK, Fearnley DB, McLellan AD, Vuckovic S, Hart DN: Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol 12: 1511–1519, 2000.

    CAS  PubMed  Google Scholar 

  191. Small M, Kraal G: In vitro evidence for participation of DEC-205 expressed by thymic cortical epithelial cells in clearance of apoptotic thymocytes. Int Immunol 15: 197–203, 2003.

    Article  CAS  PubMed  Google Scholar 

  192. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375(6527): 151–155, 1995.

    Article  CAS  PubMed  Google Scholar 

  193. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM: The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151: 673–684, 2000.

    Article  CAS  PubMed  Google Scholar 

  194. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S: Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12: 71–81, 2000.

    Article  CAS  PubMed  Google Scholar 

  195. Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Duijnhoven GC, Grabovsky V, Alon R, Figdor CG, van Kooyk Y: DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1: 353–357, 2000.

    Article  CAS  PubMed  Google Scholar 

  196. Geijtenbeek TB, Engering A, van Kooyk Y: DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol 71: 921–931, 2002.

    CAS  PubMed  Google Scholar 

  197. Sijts A, Zaiss D, Kloetzel PM: The role of the ubiquitin-proteasome pathway in MHC class I antigen processing: implications for vaccine design. Curr Mol Med 1: 665–676, 2001.

    Article  CAS  PubMed  Google Scholar 

  198. Bodey B: Neuroendocrine influence on thymic haematopoiesis via the reticuloepithelial cellular network. Expert Opinion Therapeutical Targets 6: 57–72, 2002.

    CAS  Google Scholar 

  199. Kasai M, Hirokawa K, Kajino K, Ogasawara K, Tatsumi M, Hermel E, Monaco JJ, Mizuochi T: Difference in antigen presentation pathways between cortical and medullary thymic epithelial cells. Eur J Immunol 26: 2101–2107, 1996.

    CAS  PubMed  Google Scholar 

  200. Bodey B, Bodey B Jr, Kaiser HE: Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo 11: 351–370, 1997.

    CAS  PubMed  Google Scholar 

  201. Darsow U, Ring J: Neuroimmune interactions in the skin. Curr Opinion Allergy Clin Immunol 1: 435–439, 2001.

    CAS  Google Scholar 

  202. Timmerman JM, Levy R: Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50: 507–529, 1999.

    CAS  PubMed  Google Scholar 

  203. Foss FM: Immunologic mechanisms of anti-tumor activity. Semin Oncol 29: 5–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  204. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045, 1994.

    CAS  PubMed  Google Scholar 

  205. Porgador A, Gilboa E: Bone marrow-generated dendritic cells pulsed with a class Irestricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182: 255–260, 1995.

    Article  CAS  PubMed  Google Scholar 

  206. Bodey B, Bodey B Jr, Kaiser HE: Apoptosis in the mammalian thymus during its normal histogenesis and under various in vitro and In Vivo experimental conditions. In Vivo 12: 123–134, 1998.

    CAS  PubMed  Google Scholar 

  207. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Over-expression of endoglin (CD105): A marker of breast carcinoma-induced neo-vascularization. Anticancer Research 18: 3621–3628, 1998.

    CAS  PubMed  Google Scholar 

  208. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Immunophenotypical (IP) analysis and immunobiology of childhood primary brain tumors. Anticancer Research 19: 2973–2992, 1999.

    CAS  PubMed  Google Scholar 

  209. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Immunocytochemical detection of MMP-3 and-10 expression in hepatocellular carcinomas. Anticancer Research 20: 4585–4590, 2000.

    CAS  PubMed  Google Scholar 

  210. Bodey B, Bodey B Jr, Gröger AM, Siegel SE, Kaiser HE: Immunocytochemical detection of Homeobox B3, B4, and C6 gene product expression in lung carcinomas. Anticancer Research 20: 2711–2716, 2000.

    CAS  PubMed  Google Scholar 

  211. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Matrix metalloproteinase expression in malignant melanomas: tumor-extracellular matrix interactions in invasion and metastasis. In Vivo 15: 57–64, 2001.

    CAS  PubMed  Google Scholar 

  212. Bodey B, Siegel SE, Kaiser HE: MAGE-1, a Cancer-Testis Antigen, Expression in Childhood Astrocytomas as an Indicator of Tumor Progression. In Vivo 16: 583–588, 2002.

    CAS  PubMed  Google Scholar 

  213. Nair SK, Snyder D, Rouse BT, Gilboa E: Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 70: 706–715, 1997.

    Article  CAS  PubMed  Google Scholar 

  214. Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD, Glaspy JA: Interferon-α and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukocyte Biol 64: 358–367, 1998.

    CAS  PubMed  Google Scholar 

  215. Carbone JE, Ohm DP: Immune dysfunction in cancer patients. Oncology (Huntingt) 16: 11–18, 2002.

    Google Scholar 

  216. Pioche C, Salomon B, Klatzmann D: Cellules dendritiques et therapie cellulaire antitumorale. Pathologie Biologie 43: 904–909, 1995.

    CAS  PubMed  Google Scholar 

  217. Turnbull E, MacPherson G. Immunobiology of dendritic cells in the rat. Immunol Rev 184: 58–68, 2001.

    Article  CAS  PubMed  Google Scholar 

  218. Gunzer M, Grabbe S: Dendritic cells in cancer immunotherapy. Crit Rev Immunol 21: 133–145, 2001.

    CAS  PubMed  Google Scholar 

  219. Gallucci S, Lolkema M, Matzinger P: Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5: 1249–1255, 1999.

    Article  CAS  PubMed  Google Scholar 

  220. Gabrilovich DI, Ciernik IF, Carbone DP: Dendritic cells in anti-tumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170: 101–110, 1996.

    CAS  PubMed  Google Scholar 

  221. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3: 483–490, 1997.

    CAS  PubMed  Google Scholar 

  222. Eibl B, Ebner S, Duba C, Bock G, Romani N, Erdel M, Gachter A, Niederwieser D, Schuler G: Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response. Genes Chromosomes Cancer 20: 215–223, 1997.

    Article  CAS  PubMed  Google Scholar 

  223. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF: Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93: 780–786, 1999.

    CAS  PubMed  Google Scholar 

  224. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D: Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. Eur J Immunol 29: 2567–2578, 1999.

    Article  CAS  PubMed  Google Scholar 

  225. Ruiz-Cabello F, Cabrera T, Lopez-Nevot MA, Garrido F: Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy. Semin Cancer Biol 12: 15–24, 2002.

    Article  CAS  PubMed  Google Scholar 

  226. Iezzi G, Pprotti MP, Rugarli C, Bellone M: B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines. Cancer Res 56: 11–15, 1996.

    CAS  PubMed  Google Scholar 

  227. Amoscato AA, Prenovitz DA, Lotze MT: Rapid extracellular degradation of synthetic class I peptides by human dendritic cells. J Immunol 161: 4023–4032, 1998.

    CAS  PubMed  Google Scholar 

  228. Ludewig B, McCoy K, Pericin M, Ochsenbein AF, Dumrese T, Odermatt B, Toes RE, Melief CJ, Hengartner H, Zinkernagel RM: Rapid peptide turnover and inefficient presentation of exogenous antigen crutically limit the activation of self-reactive CTL by dendritic cells. J Immunol 166: 3678–3687, 2001.

    CAS  PubMed  Google Scholar 

  229. Sijts A, Zaiss D, Kloetzel PM: The role of the ubiquitin-proteasome pathway in MHC class I antigen processing: implications for vaccine design. Curr Mol Med 1: 665–676, 2001.

    Article  CAS  PubMed  Google Scholar 

  230. Altieri DC: Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3: 46–54, 2003.

    Article  CAS  PubMed  Google Scholar 

  231. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7: 297–303, 2001.

    Article  CAS  PubMed  Google Scholar 

  232. Piemonti L, Bernasconi S, Luini W, Trobonjaca Z, Minty A, Allavena P, Mantovani A: IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur Cytokine Network 6: 245–252, 1995.

    CAS  Google Scholar 

  233. Barratt-Boyes SM, Henderson RA, Finn OJ: Chimpanzee dendritic cells with potent immunostimulatory function can be propagated from peripheral blood. Immunology 87: 528–534, 1996.

    Article  CAS  PubMed  Google Scholar 

  234. Hanada K, Tsunoda R, Hamada H: GM-CSF-induced In Vivo expansion of splenic dendritic cells and their strong costimulation activity. J Leukocyte Biol 60: 181–190, 1996.

    CAS  PubMed  Google Scholar 

  235. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF and TNF α. J Exp Med 184: 695–706, 1996.

    Article  CAS  PubMed  Google Scholar 

  236. Hochrein H, Jahrling F, Kreyschh HG, Sutter A: Immunophenotypical and functional characterization of bone marrow derived dendritic cells. Adv Exp Med Biol 378: 61–63, 1995.

    CAS  PubMed  Google Scholar 

  237. Strobl H, Riedl E, Scheinecker C, Bello-Fernandez C, Pickl WF, Rappersberger K, Majdic O, Knapp W: TGF-β 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 157: 1499–1507, 1996.

    CAS  PubMed  Google Scholar 

  238. Yamazaki K, Eyden BP: Ultrastructural and immunohistochemical observations on intralobular fibroblasts of human breast, with observations on the CD34 antigen. J Submicr Cytol Pathhol 27: 309–323, 1995.

    CAS  Google Scholar 

  239. Nijman HW, Kleijmeer MJ, Ossevoort MA, Oorschot VM, Vierboom MP, van de Keur M, Kenemans P, Kast WM, Geuze HJ, Melief CJ: Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J Exp Med 182: 163–174, 1995.

    Article  CAS  PubMed  Google Scholar 

  240. Ossevoort MA, Kleijmeer MJ, Nijman HW, Geuze HJ, Kast WM, Melief CJM: Functional and ultrastructural aspects of antigen processing by dendritic cells. Adv Exp Med Biol 378: 227–231, 1995.

    CAS  PubMed  Google Scholar 

  241. Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA, Roberts BL: Induction of anti-tumor immunity with dendritic cells transduced with adenovirus vectorencoding endogenous tumor-associated antigens. J Immunol 163: 699–707, 1999.

    CAS  PubMed  Google Scholar 

  242. Kirk CJ, Mule JJ: Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther 11: 797–806, 2000.

    Article  CAS  PubMed  Google Scholar 

  243. Furumoto K, Arii S, Yamasaki S, Mizumoto M, Mori A, Inoue N, Isobe N, Imamura M: Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic anti-tumor immune responses. Int J Cancer 87: 665–672, 2000.

    Article  CAS  PubMed  Google Scholar 

  244. Hirschowitz EA, Weaver JD, Hidalgo GE, Doherty DE: Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Ther 7: 1112–1120, 2000.

    Article  CAS  PubMed  Google Scholar 

  245. Jenne L, Schuler G, Steinkasserer A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22: 102–107, 2001.

    Article  CAS  PubMed  Google Scholar 

  246. Paul S, Calmels B, Acres RB: Improvement of adoptive cellular immunotherapy of human cancer using ex-vivo gene transfer. Curr Gene Ther 2: 91–100, 2002.

    CAS  PubMed  Google Scholar 

  247. Bodey B: Spontaneous regression of neoplasms: new possibilities for immunotherapy. Expert Opinion Biological Therapy 2: 459–476, 2002.

    CAS  Google Scholar 

  248. Maecker B, von Bergwelt-Baidon, Anderson KS, Vonderheide RH, Schultze JL: Linking genomics to immunotherapy by reverse immunology—‘immunomics’ in the new millennium. Curr Mol Med 1: 609–619, 2001.

    Article  CAS  PubMed  Google Scholar 

  249. Onaitis M, Kalady MF, Pruitt S, Tyler DS: Dendritic cell gene therapy. Surg Oncol Clin N Am 11: 645–660, 2002.

    Article  PubMed  Google Scholar 

  250. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF: Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response In Vivo. Int J Cancer 103: 205–211, 2003.

    Article  CAS  PubMed  Google Scholar 

  251. Ribas A, Butterfield LH, Glaspy JA, Economou JS: Cancer immunotherapy using genemodified dendritic cells. Curr Gene Ther 2: 57–78, 2002.

    CAS  PubMed  Google Scholar 

  252. Steinman RM, Pope M: Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest 109: 1519–1526, 2002.

    Article  CAS  PubMed  Google Scholar 

  253. Gilboa E: Immunotherapy of cancer with genetically modified tumor vaccines. Semin Oncol 23: 101–107, 1996.

    CAS  PubMed  Google Scholar 

  254. Topf N, Schmiegel WH: Immuntherapie mit genetisch modifizierten Tumorzellen. Internist 37: 374–381, 1996.

    CAS  PubMed  Google Scholar 

  255. Zhang W, He L, Yuan Z, Xie Z, Wang J, Hamada H, Cao X: Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum Gene Ther 10: 1151–1161, 1999.

    CAS  PubMed  Google Scholar 

  256. Klein C, Bueler H, Mulligan RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 191: 1699–1708, 2000.

    Article  CAS  PubMed  Google Scholar 

  257. Armstrong TD, Jaffee EM: Cytokine modified tumor vaccines. Surg Oncol Clin N Am 11: 681–696, 2002.

    Article  PubMed  Google Scholar 

  258. Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D: Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci USA 97: 2715–2718, 2000.

    Article  CAS  PubMed  Google Scholar 

  259. Xia J, Tanaka Y, Koido S, Liu C, Mukherjee P, Gendler SJ, Gong J: Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol 170: 1980–1986, 2003.

    CAS  PubMed  Google Scholar 

  260. Schultz J: Success of vaccine offers promise of cervical cancer prevention. J Natl Cancer Inst 95: 102–104, 2003.

    PubMed  Google Scholar 

  261. Shu S, Cohen P: Tumor-dendritic cell fusion technology and immunotherapy strategies. J Immunother 24: 99–100, 2001.

    CAS  Google Scholar 

  262. Lollini PL, De Giovanni C, Nicoletti G, Di Carlo E, Musiani P, Nanni P, Forni G: Immunoprevention of colorectal cancer: a future possibility? Gastroenterol Clin N Am 31: 1001–1014, 2002.

    Article  Google Scholar 

  263. Bell D, Young JW, Banchereau J: Dendritic cells. Adv Immunol 72: 255–324, 1999.

    CAS  PubMed  Google Scholar 

  264. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811, 2000.

    Article  CAS  PubMed  Google Scholar 

  265. Staquet MJ, Jacquet C, Dezutter-Dambuyant C, Schmitt D: Fibronectin upregulates in vitro generation of dendritic Langerhans cells from human cord blood CD34+ progenitors. J Invest Dermatol 109: 738–743, 1997.

    Article  CAS  PubMed  Google Scholar 

  266. Rougier N, Schmitt D, Vincent C: IL-4 addition during differentiation of CD34 progenitors delays maturation of dendritic cells while promoting their survival. Eur J Cell Biol 75: 287–293, 1998.

    CAS  PubMed  Google Scholar 

  267. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332, 1998.

    Article  CAS  PubMed  Google Scholar 

  268. Zitvogel L, Angevin E, Tursz T: Dendritic cell-based immunotherapy of cancer. Ann Oncol 11(suppl.)3: 199–205, 2000.

    PubMed  Google Scholar 

  269. Panelli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA, Marincola FM: Phase I study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother 23: 487–498, 2000.

    CAS  PubMed  Google Scholar 

  270. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH: Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18: 3894–3903, 2000.

    CAS  PubMed  Google Scholar 

  271. Cohen L, De Moor C, Parker PA, Amato RJ: Quality of life in patients with metastatic renal cell carcinoma participating in a phase I trial of an autologous tumor-derived vaccine. Urol Oncol 7: 119–124, 2002.

    CAS  PubMed  Google Scholar 

  272. Tirapu I, Rodriguez-Calvillo M, Qian C, Duarte M, Smerdou C, Palencia B, Mazzolini G, Prieto J, Melero I: Cytokine gene transfer into dendritic cells for cancer treatment. Curr Gene Ther 2: 79–89, 2002.

    CAS  PubMed  Google Scholar 

  273. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 6: 332–336, 2000.

    CAS  PubMed  Google Scholar 

  274. Gitlitz BJ, Figlin RA, Pantuck AJ, Belldegrun AS: Dendritic cell-based immunotherapy of renal cell carcinoma. Curr Urol Rep 2: 46–52, 2001.

    CAS  PubMed  Google Scholar 

  275. Veelken H, Osterroth F: Vaccination strategies in the treatment of lymphomas. Oncology 62: 187–200, 2002.

    Article  CAS  PubMed  Google Scholar 

  276. Perales MA, Wolchok JD: Melanoma vaccines. Cancer Invest 20: 1012–1026, 2002.

    Article  PubMed  Google Scholar 

  277. Wysocki PJ, Karczewska A, Mackiewicz A: Gene modified tumor vaccines in therapy of malignant melanoma. Otolaryngol Pol 56: 147–153, 2002.

    PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2005). Antigen Presentation by Dendritic Cells and Their Significance in Anti-Neoplastic Immunotherapy. In: Molecular Markers of Brain Tumor Cells. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2804-0_7

Download citation

Publish with us

Policies and ethics