Skip to main content

Coherent Spectroscopy of Stratified Semiconductor Micro- and Nanostructures

  • Conference paper
Frontiers of Optical Spectroscopy

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 168))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. Weisbuch, C., Houdre, R., Stanley, R.P. (1995) Microcavities and Semiconductors: The Strong-Coupling Regime, pp. 109–150.

    Google Scholar 

  2. Yablonovitch, E. (1993) Photonic bandgap structures, J. Opt. Soc. Am. B 10, 283–305.

    Article  ADS  Google Scholar 

  3. Born, M. and Wolf, E. (1970) Principles of Optics, Pergamon Press, Oxford.

    Google Scholar 

  4. Khitrova, G., Gibbs., Jahnke F., Kira M., and Koch, S.W. (1999) Nonlinear optics of normal-mode-coupling semiconductor microcavities, Rev. Mod. Phys. 71, 1591–1639.

    Article  ADS  Google Scholar 

  5. Skolnick, M.S., Fisher, T.A., and Whittaker, D.M. (1998) Strong coupling phenomena in quantum microcavity structures, Semicond. Sci. Technol. 13, 645–669.

    Article  ADS  Google Scholar 

  6. Savona, V., Andreani, L. C., Schwendimann, P., and Quattropani, A. (1995) Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes, Solid State Commun. 93, 733–739.

    Article  ADS  Google Scholar 

  7. Andreani, L.C., Savona, V., Schwendimann, P., and Quattropani, A. (1994) Polaritons in high reflectivity microcavities: semiclassical and full quantum treatment of optical properties, Superlattices Microstruct. 15, 453–458.

    Article  ADS  Google Scholar 

  8. Pau, S., Bjork, G., Jacobson, J., Cao, H., and Yamamoto, Y. (1995) Microcavity exciton-polariton splitting in the linear regime, Phys. Rev. B 51, 14 437.

    Google Scholar 

  9. Panzarini, G., Andreani, L.C., Armitage, A., Baxter, D., Skolnick, M.S., Roberts, J.S., Kavokin, A.V., Kaliteevski, M.A., Astratov, V.N., and Vladimirova, M.R. (1999) Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting, Phys. Rev. B 59, 5082–5089.

    Article  ADS  Google Scholar 

  10. Stanley, R.P., Houdre, R., and Oesterle, U. (1994) Appl. Phys.Lett. 65, 1883.

    Article  ADS  Google Scholar 

  11. Whittaker, D.M., Kinsler, P., Fisher, T.A., Skolnick, M.S., Armitage, A., Afshar, A.M., and Roberts, J.S. (1996) Motional narrowing in semiconductor microcavities, Phys.Rev. Lett. 77, 4792–4795.

    Article  ADS  Google Scholar 

  12. Houdre, R., Weisbuch, C., Stanley, R.P., Oesterle, U., Pellandini, P., and Ilegems, M. (1994) Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73, 2043–2046.

    Article  ADS  Google Scholar 

  13. Bastard, G. (1988) Wave Mechanics Applied to Semiconductor Heterostructures (New York: Halsted)

    Google Scholar 

  14. Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, 3314–3317.

    Google Scholar 

  15. Zhu, Y., Gauthier, D.J., Morin, S.E., Wu, Q., Carmichael, H.J., and Mossberg, I.W. (1990) Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and Experimental observations, Phys. Rev. Lett. 64, 2499–2502.

    Article  ADS  Google Scholar 

  16. Loudon, R. (1973) The Quantum Theory of Light, Clarendon, Oxford.

    Google Scholar 

  17. Haug, H., and Koch, S.W. (1994) Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd ed. World Scientific, Singapore.

    MATH  Google Scholar 

  18. Houdre, R., Stanley, R.P., Oesterle U., Ilegems M., and Weisbuch, C. (1993) Room-temperature exciton-photon Rabi splitting in a semiconductor microcavity, J. Phys. IV (Paris) 3, 51–54

    Google Scholar 

  19. Baxter, D., Skolnick, M.S., Armitage, A., Astratov, V.N., Whittaker, D.M., Fisher, T.A., Roberts, J.S., Mowbray, D.J., and Kaliteevski, M.A. (1997) Polarization-dependent phenomena in the reflectivity spectra of semiconductor quantum microcavities, Phys. Rev. B 56, 10032–10035.

    Article  ADS  Google Scholar 

  20. Kavokin, A.V., and Kaliteevski, M.A. (1995) Excitonic light reflection and absorption in semiconductor microcavities at oblique incidence, Solid State Commun. 95, 859–862.

    Article  ADS  Google Scholar 

  21. Tassone, F., Piermarocchi, C., Savona, V., and Quattropani, A. (1996) Photoluminescence decay times in strong-coupling semiconductor microcavities, Phys. Rev. B 53, 76 42–7645.

    Article  Google Scholar 

  22. Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A., and Schwendimann, P. (1997) Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons, Phys. Rev. B 56, 7554–7563.

    Article  ADS  Google Scholar 

  23. Savona, V., Tassone, F., Piermarocchi, C., Quattropani, A., and Schwendimann, P. (1996) Theory 334 of polariton photoluminescence in arbitrary semiconductor microcavity structures, Phys. Rev. B 53, 13051–13062.

    Article  ADS  Google Scholar 

  24. Pau, S., Bjork, G., Jacobson, J., Cui, H., and Yamomoto, Y. (1995) Stimulated emission of a microcavity dressed exciton and suppression of phonon scattering, Phys. Rev. B 51, 7090–7100.

    Article  ADS  Google Scholar 

  25. Stanley, R.P., Houdre, R., Weisbuch, C., Oesterle, U., and Ilegems, M. (1996) Cavity-polariton photoluminescence in semiconductor microcavities: Experimental evidence, Phys. Rev. B 53, 10995–11007.

    Article  ADS  Google Scholar 

  26. Stanley, R. P., Pau, S., Oesterle, U., Houdre, R., and Ilegems, M. (1997) Resonant photoluminescence of semiconductor microcavities: The role of acoustic phonons in polariton relaxation, Phys. Rev. B 55, 4867–4870.

    Article  ADS  Google Scholar 

  27. Ashburn, J.R., Cline, R.A., van der Burgt, P.J.M., Westerveld, W.B., Risley, J.S. (1990) Experimentally determined density matrices for H(n=3) formed in H+-He collisions from 20 to 100 keV, Phys. Rev. A 41, 2407–2410.

    Article  ADS  Google Scholar 

  28. Leichte, C., Schleich, W.P., Averbukh, I.S., Shapiro, M. (1998) Quantum State Holography, Phys. Rev. Lett. 80, 1418

    Article  ADS  Google Scholar 

  29. Weinacht, T.C., Ahn, J., Bucksbaum, P.H. (1998) Measurement of the Amplitude and Phase of a Sculpted Rydberg Wave Packet, Phys. Rev. Lett. 80, 5508.

    Article  ADS  Google Scholar 

  30. Chen, X., Yeazell, J.A. Wave-packet reconstruction in a two-electron atom via impulsive isolated core excitation, (1999) Phys. Rev. A 60, 4229–4233.

    Article  ADS  Google Scholar 

  31. Leo, K., Shah, J., Göbel, E.O., Damen, T.C., Schmitt-Rink, S., Schäfer, W., Knhler, K. (1991) Coherent oscillations of a wave packet in a semiconductor double-quantum-well structure, Phys. Rev. Lett. 66, 201–204.

    Article  ADS  Google Scholar 

  32. Salis, G., Graf, B., Ensslin, K. Campman, K., Maranowski, K., Gossard, A.C. (1997) Wave Function Spectroscopy in Quantum Wells with Tunable Electron Density, Phys. Rev. Lett. 79, 5106–5109.

    Article  ADS  Google Scholar 

  33. Dekorsy, T., Kim, A.M.T, Cho, G.C., Hunsche, S., Bakker, H.J., Kurz, H., Chuang, S.L., KOhler, K. (1996) Quantum Coherence of Continuum States in the Valence Band of GaAs Quantum Wells Quantum Coherence of Continuum States in the Valence Band of GaAs Quantum Wells, Phys. Rev. Lett. 77, 3045–3048.

    Article  ADS  Google Scholar 

  34. Garro, N., Kennedy, S.P., Phillips, R.T., Aichmayr, G., Rössler, U., Vina, L. (2003) Preservation of quantum coherence after exciton-exciton interaction in quantum wells, Phys. Rev. B 67, 121302/1–4.

    Article  ADS  Google Scholar 

  35. Esaki, L., Tsu, R. (1970) Superlattice and Negative Differential Conductivity in Semiconductors, IBMJ. Res. Dev. 61, 61.

    Article  Google Scholar 

  36. Wannier, H.G. (1959) Elements of Solid State Theory, Cambridge University Press, London.

    MATH  Google Scholar 

  37. Cundiff, S.T., Koch, M. Knox, W.H., Shah, J., Stolz, W. (1996) Optical Coherence in Semiconductors: Strong Emission Mediated by Nondegenerate Interactions, Phys. Rev. Lett. 77, 1107.

    Article  ADS  Google Scholar 

  38. Weiner, A.M., Heritage, J.P., Kirschner, E.M. (1988), J. Opt. Soc. Am. B 5, 1563.

    Article  ADS  Google Scholar 

  39. Mendez, E.E., Agulló-Rueda, F., Hong, J.M. (1988) Stark Localization in GaAs-GaAIAs Superlattices under an Electric Field, Phys. Rev. Lett. 60, 2426.

    Article  ADS  Google Scholar 

  40. Bastard, G., Bleuse, J., Ferreira, R., Voisin, P. (1989) Wannier-Stark Quantization in Semiconductor Superlattices, Superlatt. Microstruct. 6, 77.

    Article  ADS  Google Scholar 

  41. Schmitt-Rink, S., Chemla, D.S., Miller, D.A.B. (1985) Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Phys. Rev. B 32, 6601.

    Article  ADS  Google Scholar 

  42. Erland, J., Pantke, K.-H., Mizeikis, V., Lyssenko, V.G., Hvam, J.M. (1994) Spectrally resolved four-wave mixing in semiconductors: Influence of inhomogeneous broadening, Phys. Rev. B 50, 15 047.

    Article  Google Scholar 

  43. Yajima, T., Taira, Y. (1979) Spatial Optical Parametric Coupling of Picosecond Light Pulses and Transverse Relaxation Effect in Resonant Media, J. Phys. Soc. Jpn. 47, 1620.

    Article  ADS  Google Scholar 

  44. Wang, H., Ferrio, K.B., Steel, D.G., Berman, P.R., Hu, Y.Z., Binder, R., Koch, S.W. (1994) Transient four-wave-mixing line shapes: Effects of excitation-induced dephasing, Phys. Rev. A 49, 1551.

    Article  ADS  Google Scholar 

  45. Wegener, M., Chemla, D.S., Schmitt-Rink, S., Schaifer, W. (1990) Line shape of time-resolved four-wave mixing, Phys. Rev.A 42, 5675.

    Article  ADS  Google Scholar 

  46. Sayed, E., Birkedal, D., Lyssenko, V.G., Hvam, J.M. (1997) Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study, Phys. Rev. B 55, 2456.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Lyssenko, V. (2005). Coherent Spectroscopy of Stratified Semiconductor Micro- and Nanostructures. In: Di Bartolo, B., Forte, O. (eds) Frontiers of Optical Spectroscopy. NATO Science Series II: Mathematics, Physics and Chemistry, vol 168. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2751-6_8

Download citation

Publish with us

Policies and ethics