Skip to main content

Dynamics of Solid-State Coherent Light Sources

Upconversion Luminescence Dynamics

  • Conference paper
  • 1094 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 168))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollnau, M. and Jackson, S.D. (2003) Mid-infrared fiber lasers, in Solid-State Mid-Infrared Laser Sources, Springer Series on Topics in Applied Physics, Vol. 89, Sorokina, I.T. and Vodopyanov, K.L., eds., Springer-Verlag, Berlin, Heidelberg, pp. 219–253.

    Google Scholar 

  2. Judd, B.R. (1962) Optical absorption intensities of rare-earth ions, Phys. Rev. 127, 750–761.

    Article  ADS  Google Scholar 

  3. Ofelt, G.S. (1962) Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37, 511–520.

    Article  ADS  Google Scholar 

  4. Pollnau, M., Heumann, E., and Huber, G. (1992) Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3, Appl. Phys. A 54, 404–410.

    Article  ADS  Google Scholar 

  5. Pollnau, M., Ghisler, Ch., Bunea, G., Bunea, M., Lüthy, W., and Weber, H.P. (1995) 150 mW unsaturated output power at 3 jm from a single-mode-fiber erbium cascade laser, Appl. Phys. Lett. 66, 3564–3566.

    Article  ADS  Google Scholar 

  6. Pollnau, M., Spring, R., Ghisler, Ch., Wittwer, S., Lüthy, W., and Weber, H.P. (1996) Efficiency of erbium 3-µm crystal and fiber lasers, IEEE J. Quantum Electron. 32, 657–663.

    Article  ADS  Google Scholar 

  7. Hehlen, M.P., Krämer, K., Güdel, H.U., McFarlane, R.A., and Schwartz, R.N. (1994) Upconversion in Er3+-dimer systems: Trends within the series Cs3Er2 X 9 (X=C1,Br,I), Phys. Rev. B 49, 12475–12484.

    Article  ADS  Google Scholar 

  8. Digonnet, M.J.F. (2001) Rare-earth-dopedfiber lasers and amplifiers, 2nd ed., Marcel Dekker, Inc., New York, Basel.

    Book  Google Scholar 

  9. Riseberg, L.A. and Moos, H.W. (1968) Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals, Phys. Rev. 174, 429–438.

    Article  ADS  Google Scholar 

  10. Van Dijk, J.M.F. and Schuurmans, M.F.H. (1983) On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions, J. Chem. Phys. 78, 5317–5323.

    Article  ADS  Google Scholar 

  11. Güdel, H.U. and Pollnau, M. (2000) Near-infrared to visible photon upconversion processes in lanthanide doped chloride, bromide and iodide lattices, J. Alloys Compd 303–304, 307–315.

    Article  Google Scholar 

  12. Dexter, D.L. (1953) A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836–850.

    Article  ADS  Google Scholar 

  13. Miyakawa, T. and Dexter, D.L. (1970) Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids, Phys. Rev. B 1, 2961–2969.

    Article  ADS  Google Scholar 

  14. Gapontsev, V.P. and Platonov, N.S. (1989) Migration-accelerated quenching of luminescence in glasses activated by rare-earth ions, Mat. Sci. Forum 50, 165–222.

    Article  Google Scholar 

  15. Grant, W.J.C. (1971) Role of rate equations in the theory of luminescent energy transfer, Phys. Rev. B 4, 648–663.

    Article  ADS  Google Scholar 

  16. Delevaque, E., Georges, T., Monerie, M., Lamouler, P., and Bayon, J.-F. (1993) Modeling of pair-induced quenching in erbium-doped silicate fibers, IEEE Photonics Technol. Lett. 5, 73–75.

    Article  ADS  Google Scholar 

  17. Wagener, J.L., Wysocki, P.F., Digonnet, M.J.F., Shaw, H.J., and DiGiovanni, D.J. (1993) Effects of concentration and clusters in erbium-doped fiber lasers, Opt. Lett. 18, 2014–2016.

    Article  ADS  Google Scholar 

  18. Quimby, R.S., Miniscalco, W.J., and Thompson, B. (1994) Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption, J. Appl. Phys. 76, 4472–4478.

    Article  ADS  Google Scholar 

  19. Maurice, E., Monnom, G., Dussardier, B., and Ostrowsky, D.B. (1995) Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers, Opt. Lett. 20, 2487–2489.

    Article  ADS  Google Scholar 

  20. Pollnau, M., Gamelin, D.R., Lüthi, S.R., Güdel, H.U., and Hehlen, M.P. (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B 61, 3337–3346.

    Article  ADS  Google Scholar 

  21. Auzel, F. (1973) Proc. IEEE 6, 758–786.

    Article  Google Scholar 

  22. Wright, J.C. (1976) in Fong, F.K., Topics in Applied Physics: Radiationless Processes in Molecules and Condensed Phases, Vol. 15, Springer, Berlin, Heidelberg, pp. 239–295.

    Chapter  Google Scholar 

  23. Malinowski, M., Jacquier, B., Bouazaoui, M., Joubert, M.F., and Linares, C. (1990) Laser-induced fluorescence and up-conversion processes in LiYF4:Nd3+ laser crystals, Phys. Rev. B 41, 31–41.

    Article  ADS  Google Scholar 

  24. Cockroft, N.J., Jones, G.D., and Nguyen, D.C. (1992) Dynamics and spectroscopy of infrared-to-visible upconversion in erbium-doped cesium cadmium bromide (CsCdBr3:Er3+), Phys. Rev. B 45, 5187–5198.

    Article  ADS  Google Scholar 

  25. Gharavi, A. and McPherson, G.L. (1992) Up-conversion luminescence from simultaneously excited pairs of Tm3+ ions in CsMgCl3 crystals, Chem. Phys. Lett. 200, 279–282.

    Article  ADS  Google Scholar 

  26. Wermuth, M., Riedener, T., and Güdel, H.U. (1998) Spectroscopy and upconversion mechanisms of CsCdBr3:Dy3+, Phys. Rev. B 57, 4369–4376.

    Article  ADS  Google Scholar 

  27. Johnson, L.F. and Guggenheim, H.J. (1972) New laser lines in the visible from Er3+ ions in BaY2F8, Appl. Phys. Lett. 20, 474–477.

    Article  ADS  Google Scholar 

  28. Silversmith, A.J., Lenth, W., and Macfarlane, R.M. (1987) Green infrared-pumped erbium upconversion laser, Appl. Phys. Lett. 51, 1977–1979.

    Article  ADS  Google Scholar 

  29. Brede, R., Danger, T., Heumann, E., Huber, G., and Chai, B.H.T. (1993) Room temperature green laser emission of Er3+:LiYF4, Appl. Phys. Lett. 63, 729–730.

    Article  ADS  Google Scholar 

  30. Thrash, R.J. and Johnson, L.F. (1994) Upconversion laser emission from Yb sensitised Tm in BYF, J. Opt. Soc. Am. B 11, 881–885.

    Article  ADS  Google Scholar 

  31. Sandrock, T., Scheife, H., Heumann, E., and Huber, G. (1997) High-power continuous-wave upconversion fiber laser at room temperature, Opt. Lett. 22, 808–810.

    Article  ADS  Google Scholar 

  32. Paschotta, R., Barber, P.R., Tropper, A.C., and Hanna, D.C. (1997) Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers, J. Opt. Soc. Am. B 14, 1213–1218.

    Article  ADS  Google Scholar 

  33. Laming, R.I., Poole, S.B., and Tarbox, E.J. (1988) Pump excited-state absorption in erbium-doped fibers, Opt. Lett. 13, 1084–1086.

    Article  ADS  Google Scholar 

  34. Payne, S.A., Wilke, G.D., Smith, L.K., and Krupke, W.F. (1994) Auger upconversion losses in Nd-doped laser glasses, Opt. Commun. 111, 263–268.

    Article  ADS  Google Scholar 

  35. Pollnau, M. (1997) The route toward a diode-pumped 1-W erbium 3-pm fiber laser, IEEE J. Quantum Electron. 33, 1982–1990.

    Article  ADS  Google Scholar 

  36. Pollnau, M., Hardman, P.J., Kern, M.A., Clarkson, W.A., and Hanna, D.C. (1998) Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG, Phys. Rev. B 58, 16076–16092.

    Article  ADS  Google Scholar 

  37. Guyot, Y., Manaa, H., Rivoire, J.Y., Moncorgé, R., Gamier, N., Descroix, E., Bon, M., and Laporte, P. (1995) Excited-state absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12, YLiF4, and LaMgAl11O19, Phys. Rev. B 51, 784–799.

    Article  ADS  Google Scholar 

  38. Chuang, T. and Verdún, H.R. (1996) Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals, IEEE J. Quantum Electron. 32, 79–91.

    Article  ADS  Google Scholar 

  39. Singh, S. and Geusic, J.E. (1966) Observation and saturation of a multiphoton process in NdC13, Phys. Rev. Lett. 17, 865–868.

    Article  ADS  Google Scholar 

  40. Lüthi, S.R., Pollnau, M., Güdel, H.U., and Hehlen, M.P. (1999) Near-infrared to visible upconversion in Er3+ doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 µm, Phys. Rev. B 60, 162–178.

    Article  ADS  Google Scholar 

  41. 41.Pollnau, M., Graf, Th., Balmer, J.E., Lüthy, W., and Weber, H.P. (1994) Explanation of the cw operation of the Er3+ 3-µm crystal laser, Phys. Rev. A 49, 3990–3996.

    Article  ADS  Google Scholar 

  42. Vasquez, S.O. and Flint, C.D. (1995) A shell model for cross relaxation in elpasolite crystals: application to the 3P0 and 1G4 states of Cs2NaY1−xPrxCl6, Chem. Phys. Lett. 238, 378–386.

    Article  ADS  Google Scholar 

  43. McPherson, G.L., Varga, J.A., and Nodine, M.H. (1979) Magnetic interactions in exchange-coupled pairs of chromium(III) and molybdenum(III) ions in crystals of CsMX3 halides, Inorg. Chem. 18, 2189–2195.

    Article  Google Scholar 

  44. Wenger, O.S., Gamelin, D.R., Güdel, H.U., Butashin, A.V., and Kaminskii, A.A. (2000) Site-selective yellow to violet and near-infrared to green upconversion in BaLu2F8:Nd3+, Phys. Rev. B 61, 16530–16537.

    Article  ADS  Google Scholar 

  45. Gamelin, D.R. and Güdel, H.U. (1999) Spectroscopy and dynamics of Re4+ near-IR-to-visible luminescence upconversion, Inorg. Chem. 38, 5154–5164.

    Article  Google Scholar 

  46. Laversenne, L., Pollnau, M., Bigotta, S., Toncelli, A., and Tonelli, M. (2003) Super-quadratic behavior of luminescence decay excited by energy-transfer upconversion, International Conference on f-Elements, Geneva, Switzerland, Final Programme and Abstract Book, p. 64.

    Google Scholar 

  47. Pollnau, M. (2002) Decorrelation of luminescent decay in energy-transfer upconversion, J. Alloys Compd. 341, 51–55.

    Article  Google Scholar 

  48. Pollnau, M., Laversenne, L., Bigotta, S., Toncelli, A., and Tonelli, M. (to be submitted) Upconversion-luminescence transients in the presence of inhomogeneous ion distributions.

    Google Scholar 

  49. Fan, T.Y., Dixon, G.J., and Byer, R.L. (1986) Efficient GaAlAs diode laser pumped operation of Nd:YLF at 1.047 µm with intracavity doubling to 523.6 nm, Opt. Lett. 11, 204–206.

    Article  ADS  Google Scholar 

  50. Beach, R., Reichert, P., Benett, W., Freitas, B., Mitchell, S., Velsko, A., Darwin, J., and Solarz, R. (1993) Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+: YLF laser oscillator, Opt. Lett. 18, 1326–1328.

    Article  ADS  Google Scholar 

  51. Pollnau, M., Hardman, P.J., Clarkson, W.A., and Hanna, D.C. (1998) Upconversion, lifetime quenching, and ground-state bleaching in Nd 3+:LiYF4, Opt. Commun. 147, 203–211.

    Article  ADS  Google Scholar 

  52. Hardman, P.J., Clarkson, W.A., Friel, G.J., Pollnau, M., and Hanna, D.C. (1999) Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals, IEEE J. Quantum Electron. 35, 647–655.

    Article  ADS  Google Scholar 

  53. Danielmeyer, H.G., Blätte, M., and Balmer, P. (1973) Fluorescence quenching in Nd:YAG, Appl. Phys. 1, 269–274.

    Article  ADS  Google Scholar 

  54. Devor, D.P., DeShazer, L.G., and Pastor, R.C. (1989) Nd:YAG quantum efficiency and related radiative properties, IEEE J. Quantum Electron. 25, 1863–1873.

    Article  ADS  Google Scholar 

  55. Fan, T.Y. (1993) Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quantum Electron. 29, 1457–1459.

    Article  ADS  Google Scholar 

  56. Lupei, V. and Lupei, A. (1996) Emission quantum efficiency and heating effects in YAG:Nd3+ lasers, Opt. Eng. 35, 1252–1257.

    Article  ADS  Google Scholar 

  57. Robinson, M. and Devor, P.D. (1967) Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3*, Appl. Phys. Lett. 10, 167–170.

    Article  ADS  Google Scholar 

  58. Zharikov, E.V., Zhekov, V.I., Kulevskii, L.A., Murina, T.M., Osiko, V.V., Prokhorov, A.M., Savel'ev, A.D., Smirnov, V.V., Starikov, B.P., and Timoshechkin, M.I. (1975) Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 μ, Sov. J. Quantum Electron. 4, 1039–1040.

    Article  ADS  Google Scholar 

  59. Bagdasarov, K.S., Zhekov, V.I., Lobachev, V.A., Murina, T.M., and Prokhorov, A.M. (1983) Steady-state emission from a Y3A15O12:Er3+ laser (λ = 2.94 μ, T = 300°K), Sov. J. Quantum Electron. 13, 262–263.

    Article  ADS  Google Scholar 

  60. Pollnau, M., Ghisler, Ch., Lüthy, W., and Weber, H.P. (1998) Cross-sections of excited-state absorption at 800 nm in erbium-doped ZBLAN fiber, Appl. Phys. B 67, 23–28.

    Article  ADS  Google Scholar 

  61. Jackson, S.D., King, T.A., and Pollnau, M. (1999) Diode-pumped 1.7-W erbium 3-µm fiber laser, Opt. Lett. 24, 1133–1135.

    Article  ADS  Google Scholar 

  62. Zhekov, V.I., Lobachev, V.A., Murina, T.M., and Prokhorov, A.M. (1983) Efficient cross-relaxation laser emitting at λ=2.94 μ, Sov. J. Quantum Electron. 13, 1235–1237.

    Article  ADS  Google Scholar 

  63. Pollnau, M. and Jackson, S.D. (2001) Erbium 3-µm fiber lasers, IEEE J. Select. Topics Quantum Electron. 7, 30–40.

    Article  Google Scholar 

  64. Pollack, S.A. and Chang, D.B. (1988) Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2 and CaF2 crystals, J. Appl. Phys. 64, 2885–2893.

    Article  ADS  Google Scholar 

  65. Pollnau, M. (2003) Analysis of heat generation and thermal lensing in erbium 3-µm lasers, IEEE J. Quantum Electron. 39, 350–357.

    Article  ADS  Google Scholar 

  66. Stoneman, R.C., Lynn, J.G., and Esterowitz, L. (1992) Direct upper-state pumping of the 2.8 µm Er3+:YLF laser, IEEE J. Quantum Electron. 28, 1041–1045.

    Article  ADS  Google Scholar 

  67. Wyss, C., Lüthy, W., Weber, H.P., Rogin, P., and Hulliger, J. (1997) Emission properties of an optimised 2.8 pim Er3+:YLF laser, Opt. Commun. 139, 215–218.

    Article  ADS  Google Scholar 

  68. Prokhorov, A.M., Zhekov, V.I., Murina, T.M., and Plantov, N.N. (1983) Pulsed YAG:Er3+ laser efficiency (analysis of model equations), Laser Phys. 3, 79–83.

    Google Scholar 

  69. Pollnau, M., Spring, R., Wittwer, S., Lüthy, W., and Weber, H.P. (1997) Investigations on the slope efficiency of a pulsed 2.8-µm Er3+:LiYF4 laser, J. Opt. Soc. Am. B 14, 974–978.

    Article  ADS  Google Scholar 

  70. Pollnau, M. and Jackson, S.D. (2002) Correction to "Erbium 3-µm fiber lasers", IEEE J. Select. Topics Quantum Electron. 8, 956.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Pollnau, M. (2005). Dynamics of Solid-State Coherent Light Sources. In: Di Bartolo, B., Forte, O. (eds) Frontiers of Optical Spectroscopy. NATO Science Series II: Mathematics, Physics and Chemistry, vol 168. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2751-6_16

Download citation

Publish with us

Policies and ethics