Skip to main content

Improving Sewage Treatment Plant Performance in Wet Weather

  • Conference paper

Part of the book series: Nato Science Series: IV: Earth and Environmental Sciences ((NAIV,volume 43))

5. Conclusions

Treatment plants may be subject to significant process upsets during extreme flow conditions. The type and extent of the upset will vary depending on plant configuration, processes, and gradient-duration of the load transient. Better utilisation of STPs with respect to the attainment of receiving water quality goals can be achieved by implementing appropriate process modifications and/or additions and by adopting sensible control strategies, supported by an initial “flexible” design of the facility. Adequate on-line monitoring capabilities are needed in all these cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Lijklema L., Tyson J.M. and Le Souef A. (eds.). (1993). Interurba’ 92 Interactions Between Sewers, Treatment Plants and Receiving Waters in Urban Areas. Pergamon Press, Oxford.

    Google Scholar 

  2. Saldanha Marcos J. (ed.). (2001). Interactions Between Sewers, Treatment Plants and Receiving Waters in Urban Areas (Interurba II). IWA Publishing, London.

    Google Scholar 

  3. EPA (1990). National Pollutant Discharge Elimination System Permit Application Regulations for Stormwater Discharges, 40 CFR Parts 122,123,124, Federal Register, 55(222).

    Google Scholar 

  4. EU (2000). Council Directive 2000/60/EC establishing a framework for Community action in the field of water policy. OJ 22.12.2000.

    Google Scholar 

  5. House, M.A., Ellis, J.B., Herricks, E., Hvitved-Jacobsen, T., Seager, J., Lijklema, L., Aalderlink, H. and Clifforde, I.T. (1993). Urban Drainage: impacts on receiving water quality, Wat. Sci. Tech., 27(12).

    Google Scholar 

  6. Harremoës, P. (2002). Integrated Urban Drainage, status and perspectives, Wat. Sci. Tech., 45(3).

    Google Scholar 

  7. Ashley R.M., J. Dudley, J. Vollersten, A.J. Saul, A. Jack and J.R. Blanksby. (2002). The effect of extended in-sewer storage on wastewater treatment plant performance. Wat. Sci. Tech., 45(3).

    Google Scholar 

  8. Durchschlag, A. and W. Schilling. (1988). Long term simulation of pollutant loads in treatment plant effluents and combined sewer overflows. In Hydrological processes and water management in urban areas. International Symposium, Duisburg.

    Google Scholar 

  9. Harremoës, P., Capodaglio, A.G., Hellstrom, B.G., Henze, M., Jensen, K.N., Lynggaard-Jensen, A., Otterpohl, R. Soeberg, H. (1993). Wastewater treatment plants under transient loading-Performance, modelling and control, Wat. Sci. Tech., 27(12).

    Google Scholar 

  10. Capodaglio, A.G. (2002). Wet-weather transient impacts on wastewater treatment. Proceedings, NATO-ARW. Urban Water Management: Science, Technology and Service Delivery. 16–20 October, Borovetz, Bulgaria.

    Google Scholar 

  11. Krebs, P., P. Holzer, J.L. Huisman, and W. Rauch. (1999). First flush of dissolved compounds. Wat. Sci. Tech., 39(9).

    Google Scholar 

  12. Brashear R., C. Vitasovic, C. Johnson, R. Clinger, J. Rife, D. Lafitte and O. Nadi. (2002). Best Practices for the Treatment of Wet Weather Wastewater Flows. WERF, Alexandria, VA.

    Google Scholar 

  13. Bridoux G., A. Villeroux, M. Riotte and M. Huau. (1998). Optimized lamella settling process for runoff water treatment, Wat. Sci. Tech, 38(10).

    Google Scholar 

  14. Daligault A., D. Meaudre, D. Arnault, V. Duc, N. Bardin, N. Aires, D. Biau, J. Scmid, P. Clement and J.Y. Viau. (1991). Stormwater and lamella settlers: efficiency and reliability, Wat. Sci. Tech., 24(6).

    Google Scholar 

  15. West R., R. Sawey and D. Gerrit. (2000). Pilots shows alternative process manage storms efficiently at less cost. Watershed & Wet Weather Tech. Bull., 5(4).

    Google Scholar 

  16. EPA (2000). Retrofitting Control Facilities for Wet-Weather Flow Treatment. EPA 600/R-00/020, ORD, Washington, DC.

    Google Scholar 

  17. Booker N., G. Ocal and A. Priestley. (1996). Novel high-rate process for sewer overflow treatment. Wat Sci. Tech. 34(3–4).

    Google Scholar 

  18. Laine S., T. Poujol, S. Dufay, J. Baron and P. Robert. (1998). Treatment of storm water to bathing water quality by dissolved air flotation, filtration and ultraviolet disinfection. Wat. Sci. Tech., 38(10).

    Google Scholar 

  19. EPA (1981). Joint Dry/Wet Weather Treatment of Municipal Wastewater at Clatskanie, Oregon. EPA 600/2-81-061, ORD, Washington, DC.

    Google Scholar 

  20. Lynggaard-Jensen, A., Eisum, N.H., Rasmussen, I., Jacobsen, H.S. and Stenstrøm, T. (1995). Description and test of a new generation of nutrient sensors. Proceedings, IWA Specialized Conference on “Sensors in Waste Water Technology”, Vol. 1, Copenhagen 25–27 October.

    Google Scholar 

  21. Winkler S., Fleischmann N. and Rieger L. (2002). Submersible UV-VIS spectrometer for continuous measurement of COD, nitrate and suspended solids. Proceedings, 3rd IWA World Water Conference, Melbourne 7–12 April.

    Google Scholar 

  22. Capodaglio, A.G., A. Callegari and A. Weingartner (2003). Poster presentation, NATO AWR Enhancing Urban Environment: Environmental Upgrading of Municipal Pollution Control Facilities and Restoration of Urban Waters, Rome, Italy, Nov. 5–8.

    Google Scholar 

  23. Novotny V. and Capodaglio A.G. (1992). Strategy of stochastic real-time control of wastewater treatment plants. Transactions ISA, 32(1).

    Google Scholar 

  24. Henze M., Grady C.P.L., Gujer W. Marais G.v.R. and Matsuo T. (1992). Activated Sludge Model No. 2. IAWPRC Scientific and Technical Report No. 3, IAWRPC, London.

    Google Scholar 

  25. Capodaglio A.G., Fortina L., Olmo M. and Rapa D. (2002). Development and applications of a computer-based WWTP model. Proceedings, 3rd IWA World Water Conference, Melbourne 7–12 April.

    Google Scholar 

  26. Novotny V., Capodaglio A.G. and Feng X. (1990). Stochastic real time control of wastewater treatment plant operation. Adv. Wat. Poll. Control,Yokohama-Kyoto.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Capodaglio, A.G. (2004). Improving Sewage Treatment Plant Performance in Wet Weather. In: Marsalek, J., Sztruhar, D., Giulianelli, M., Urbonas, B. (eds) Enhancing Urban Environment by Environmental Upgrading and Restoration. Nato Science Series: IV: Earth and Environmental Sciences, vol 43. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2694-3_15

Download citation

Publish with us

Policies and ethics