Skip to main content

Transient Conditions: Program and Erase

Theory, compact modeling and circuit simulations

  • Chapter
Floating Gate Devices: Operation and Compact Modeling
  • 276 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kolodny, S. T. K. Nieh, B. Eitan, and J. Shappir, “Analysis and modeling of Floating Gate EEPROM cells,” IEEE Trans. Electron Dev., Vol. ED-33(6), pp.835–844, 1986.

    Google Scholar 

  2. F. Gigon, “Modeling and simulation of the 16 megabit EPROM cell for write/read operation with a compact SPICE model,” Proc. IEDM, pp. 205–208, 1990.

    Google Scholar 

  3. S. Keeney, F. Piccinini, M. Morelli, A. Mathewson, C. Lombardi, R. Bez, L. Ravazzi, and D. Cantarelli, “Complete transient simulation of flash EEPROM devices,” Proc. IEDM, pp. 201–204, 1990.

    Google Scholar 

  4. J. Suñè, M. Lanzoni, R. Bez, P. Olivo, and B. Riccò, “Transient simulation of the erase cycle of floating gate EEPROMs,” IEDM Tech. Dig., pp.905–908, 1991.

    Google Scholar 

  5. S. Keeney, R. Bez, D. Cantarelli, F. Piccinini, A. Mathewson, L. Ravazzi, C. Lombardi, “Complete Transient Simulation of Flash EEPROM Devices”, IEEE Trans. Electron Dev., Vol. ED-39(12), pp. 2750–2757, 1992.

    Google Scholar 

  6. M. Lanzoni, J. Suné, P. Olivo, B. Riccò, “Advanced electrical-level modeling of EEPROM cells”, IEEE Trans. Electron Dev., Vol. ED-40(5), pp.951–957, 1993.

    Google Scholar 

  7. K.V. Noren and Ming Meng, “Macromodel development for a FLOTOX EEPROM,“ IEEE Trans. Electron Dev., Vol. ED-45(1), pp.224–229, 1998.

    Google Scholar 

  8. M. Lorenzini, R. Vissarion, and M. Rudan, “Three-dimensional modeling of the erasing operation in a submicron Flash-EEPROM memory cell,” IEEE Trans. Electron Dev., Vol. ED-46(5), pp.975–983, 1993.

    Google Scholar 

  9. S. Chung, C.-M. Yih, S. S. Wu, H. H. Chen, and G. Hong, “A Spice-compatible Flash EEPROM model feasible for transient and program/erase cycling endurance simulation,” in IEDM Tech. Dig., pp.179–182, 1999.

    Google Scholar 

  10. M. O’Shea, A. Concannon, K. G. McCarthy, B. Lane, A. Mathewson, M. Slotboom, “Macro Model for Flash EEPROM cells,” Proc. ESSDERC, pp. 352–355, 2000.

    Google Scholar 

  11. R. Duane, A. Concannon, P. O’Sullivan, A. Mathewson, “Advanced numerical modelling of non-volatile memory cells”, Proc. ESSDERC, pp. 304–307, 1998.

    Google Scholar 

  12. R. Bez, D. Cantarelli, and P. Cappelletti, “Experimental transient analysis of the tunnel current in EEPROM cells,” IEEE Trans. Electron Dev., Vol. ED-37(4), pp. 1081–1086, 1990.

    Google Scholar 

  13. L. Esaki, ”Long journey into tunneling,” Proc. IEEE, vol. 62, pp. 825–831, 1974.

    Google Scholar 

  14. J. Moll, Physics of Semiconductors. New York: McGraw-Hill, 1964.

    MATH  Google Scholar 

  15. M. Lenziger and E.H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, no. 1, pp. 278–283, 1969.

    Google Scholar 

  16. G. Pananakakis, G. Ghibaudo, and R. Kies, “Temperature dependence of the Fowler-Nordheim current in metal-oxide-degenerate semiconductor structures,” J. Appl. Phys., vol. 78, no. 4, pp. 2635–2641, 1995.

    Article  Google Scholar 

  17. L. Larcher, A. Paccagnella, and G. Ghidini, “Gate Current in Ultra-thin MOS Capacitors: A New Model of Tunnel Current”, IEEE Trans. Electr. Devices, Vol.48, N.2, pp.271–278, 2001.

    Google Scholar 

  18. Z. A. Weinberg, “On tunneling in metal-oxide-silicon structure,” J. Appl. Phys., vol. 53, no. 7, pp. 5052–5056, 1982

    Article  Google Scholar 

  19. M.V. Fischetti, D.J. Di Maria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, ”Ballistic electron transport in thin silicon dioxide films,” Physical Review B, vol. 35, no. 9, pp. 4404–4415, 1987.

    Article  Google Scholar 

  20. O. Briere, K. Barla, A. Halimaoui, and G. Ghibaudo, “Oscillatory behavior of the tunneling current in ultra thin gate dielectrics influence of various physical and technological parameters,” Solid-St. Electron., vol. 41, no. 7, pp. 987–990, 1997.

    Google Scholar 

  21. J. Maserjian and N. Zamani, “Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling,” J. Appl. Phys., vol. 56, no. 1, pp. 559–567, 1982.

    Google Scholar 

  22. A. Schenk and G. Heiser, “Modeling and simulation of tunneling through ultra-thin gate dielectrics,” J. Appl. Phys., vol. 81, no. 12, pp. 7900–7910, 1997.

    Article  Google Scholar 

  23. C. Moglestue, “Self-consistent calculation of electron and hole inversion charges at silicon-silicon dioxide interfaces,” J. Appl. Phys., vol. 59, no. 9, pp. 3175–3183, 1986.

    Article  Google Scholar 

  24. P. Olivo, J. Sune, and B. Riccò, “Self consistent solution of the Poisson and Schrödinger equations in accumulated semiconductor insulator interface,” J. Appl. Phys., vol. 70, no. 1, pp. 337–345, 1991.

    Google Scholar 

  25. A. Wettstein, A. Schenk, A. Scholte, and W. Fichtner, “The influnce of localized states on gate tunnel current — Modeling and simulation,” in Technical report No. 97/9 (ETH), SISPAD 1997, Boston, September 9, 1997.

    Google Scholar 

  26. S.S. Gong, M.E. Burnham, N.D. Theodore, and D.K. Schroeder, “Evaluation of QBD for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface,“ IEEE Trans. Electron Dev., Vol. ED-40(7), pp. 1251–1257, 1993.

    Google Scholar 

  27. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. mod. Phys., vol. 58, pp. 437–672, 1982.

    Google Scholar 

  28. K. S. Krisch, J. D. Bude, and L. Manchanda, “Gate capacitance attenuation in MOS devices with thin gate dielectrics”, IEEE Electron Device Lett., vol. 17, no. 11, pp. 521–524, 1996.

    Article  Google Scholar 

  29. S. Takagi and A. Toriumi, “Qualitative undestanding of inversion-layer capacitance in Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 42, no. 12, pp. 2125–2130, 1995.

    Article  Google Scholar 

  30. N. D. Arora, R. Rios, and D. A. Antoniadis, “Capacitance modeling for deep submicron thin gate oxide MOSFETs”, in Proc. ESSDERC, pp. 569–572, 1995.

    Google Scholar 

  31. J. A. Lòpez-Villanueva, P. Cartujo-Casinello, J. Banqueri, F. Gàmiz, and S. Rodríguez, “Effects on the inversion layer centroid on MOSFET behavior”, IEEE Trans. Electron Devices, vol. 44, no. 11, pp. 1915–1922, 1997

    Google Scholar 

  32. A. P. Gnädinger and H. E. Talley, “Quantum mechanical calculation of the carrier distribution and the thickness of the inversion layer of a MOS field-effect transistor”, Solid State Electron., Vol. 13, pp. 1301–1309, 1970.

    Google Scholar 

  33. F. Stern, “Self-consistent results for n-type Si inversion layers”, Physical Review B, vol. 5, no. 12, pp. 4891–4899, 1972.

    Article  Google Scholar 

  34. L. Larcher, P. Pavan, F. Pellizzer, G. Ghidini, “A new model of gate capacitance as a simple tool to extract MOS parameters,” IEEE Trans. Electron Dev., Vol. ED-48(4), pp.935–945, 2001.

    Google Scholar 

  35. J. Suñè, P. Olivo, and B. Riccò, “Quantum-mechanical modeling of accumulation layers in MOS structure,” IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1732–1738, 1992.

    Google Scholar 

  36. Y. Tsividis, “Operation and modeling of the MOS transistors”, Second Edition, Chap. 2 and 6, McGraw-Hill, 1999.

    Google Scholar 

  37. L. Reggiani, “Hot electron transport in semiconductors,” Springer Verlag topics in Applied Physics, vol. 58, p. 58, Berlin-Heidelberg, 1985.

    Google Scholar 

  38. C. Hu, “Lucky-electron model of channel hot electron emission,” in IEDM Tech. Dig., pp.223–226, 1979.

    Google Scholar 

  39. S. Tam, P. K. Ko, and C. Hu, “Lucky-electron model of electron injection in MOSFET’s,” IEEE Trans. Electron Devices, Vol. 31, N. 9, pp. 1116–1125, 1984.

    Google Scholar 

  40. T. H. Ning, C. M. Osbourn, an H. N. Yu, “Emission probability of hot electrons from silicon into silicon dioxide,” J. Appl. Phys., Vol. 48, pp. 286–293, 1977.

    Article  Google Scholar 

  41. B. Eitan, and D. Frohman-Bentchkowsky, “Hot-Electron injection into the oxide in n-channel MOS devices,” IEEE Trans. Electron Dev., Vol. ED-28(3), pp.328–340, 1981.

    Google Scholar 

  42. http://www.semiconductors.philips.com/Philips_Models/

  43. Manual, 1999 U. C. Berkeley, USA, 1999. [available online: http://www-device.eecs.berkeley.edu/~ptm].

  44. W. Liu, X. Jin, K. M. Cao, an C. Hu, “44.0.0 MOSFET Model User’s Manual,“ 2000.

    Google Scholar 

  45. C. Enz, F. Krummenacher, and E. Vittoz, “An analytical MOS transistor model valid in all regions of operations and dedicated to low voltage and low current applications,” Analog Integrated Circuit & Signal Processing, Vol. 8, pp. 83–114, July 1995.

    Google Scholar 

  46. M. Bucher, C. Lallament, C. Enz, F. Theodoloz, and F. Krummenacher, “The EPFL-EKV MOSFET model equations for circuit simulation, Version 2.6,“ Technical Report, Electronics Laboratory, Swiss Federal Institute o Technology (EPFL), June 1997. [available online: http://legwww.epfl.ch/ekv/].

  47. G. Gildenblat, N. Arora, R. Sung, and P. Bendix, “Scalable surface potential based compact MOSFET model,“ Proc. 1997 International Semiconductor Device Research Symposium, p. 33, 1997.

    Google Scholar 

  48. T. L. Chen and G. Gildenblat, “Analytical approximation for the MOSFET surface potential,“ Solid-State Electronics, Vol. 45, pp. 335–339, 2001.

    Google Scholar 

  49. http://home.hiroshima-u.ac.jp/usdl/HiSIM.html

  50. T. Y. Chan, P. K. Ko, and C. Hu, “Dependence of channel electric field on device scaling,” IEEE Electron Device Lett., Vol. 6, N. 10, pp. 551–553, 1985.

    Article  Google Scholar 

  51. C. Sodini, P. K. Ko, and J. L. Moll, “The effect of high fields on MOS device and circuit performance,” IEEE Trans. on Electron Devices, Vol. 31, pp. 1386–1393, 1984.

    Google Scholar 

  52. C. Hu, “Hot-electron effects in MOSFET’s,” Proc. IEDM, pp. 176–181, 1983.

    Google Scholar 

  53. D. Cassi and B. Riccò, “An analytical model of the energy distribution of hot electrons,” IEEE Trans. Electr. Devices, Vol.37, N.6, pp.1514–1521, 1990.

    Google Scholar 

  54. C. Fiegna, F. Venturi, M. Melanotte, E. Sangiorgi, and Bruno Riccò, “Simple and efficient modeling of EPROM writing,” IEEE Trans. Electron Dev., Vol. ED-38(3), pp.603–610, 1991.

    Google Scholar 

  55. K. Hasnat, C.-F. Yeap, S. Jallepalli, W.-K. Shih, S. A. Hareland, V. M. Agostinelli, A. F. Tasch, and C. M. Maziar, “A pseudo-lucky electron model for simulation of electron gate current in submicron nMOSFET’s,” IEEE Trans. Electron Dev., Vol. ED-43(8), pp. 1264–1273, 1996.

    Google Scholar 

  56. K. Hasnat, C.-F. Yeap, S. Jallepalli, S. A. Hareland, W.-K. Shih, V. M. Agostinelli, A. F. Tasch, and C. M. Maziar, “Thermoionic emission model of electron gate current in submicron nMOSFET–s,” IEEE Trans. Electron Dev., Vol. ED-44(1), pp. 129–138, 1997.

    Google Scholar 

  57. Y.A. El Mansy, and A.R. Boothroyd, “A simple-two-dimensional model for IGFET operation in the saturation region,” IEEE Trans. Electron Dev., Vol. ED-24, p.254, 1977.

    Google Scholar 

  58. P.K. Ko et al., “A unified model for hot-electron currents in MOSFET’s” in IEDM Tech. Dig., p.600, 1980

    Google Scholar 

  59. B. Riccò, G. Torelli, M. Lanzoni, A. Manstretta, H. E. Maes, D. Montanari, and A. Modelli, “Nonvolatile multilevel memories for digital applications,“ Proc. of the IEEE, vol. 86, N. 12, pp.2399–2421, 1998.

    Google Scholar 

  60. J. D. Bude, A. Frommer, M. R. Pinto, and G. R. Weber, “EEPROM/flash sub 3.0V drain-source bias hot carrier writing,” in IEDM Tech. Dig., pp.989–991, 1995.

    Google Scholar 

  61. J.D. Bude, M. Mastrapasqua, M.R. Pinto, R.W. Gregor, P.J. Kelley, R.A. Kohler, C.W. Leung, Y. Ma, R.J. McPartland, P.K. Roy, R. Singh, “Secondary Electron Flash — a high performance, low power Flash technology for 0.35 μm and below,” in IEDM Tech. Dig., pp.279–282, 1997

    Google Scholar 

  62. J.D. Bude, M.R. Pinto, and R.K. Smith, “Monte Carlo simulation of the CHISEL-Flash memory cell,” IEEE Trans. Electron Dev., Vol. ED-47(10), pp.1873–1881, 2000.

    Google Scholar 

  63. D. Esseni and L. Selmi, “A better understanding of substrate enhanced gate current in VLSI MOSFET’s and Flash cells-Part I: Phenomenological Aspects,” IEEE Trans. Electron Dev., Vol. ED-46, pp.369–375, 1999.

    Google Scholar 

  64. D. Esseni, L. Selmi, A. Ghetti, and E. Sangiorgi, “Injection efficiency of CHISEL gate currents in short MOS devices: physical mechanisms, device implications, and sensitivity to technological parameters,” IEEE Trans. Electron Dev., Vol. ED-47(11), pp. 2194–2200, 1999.

    Google Scholar 

  65. A. Ghetti, “MOSFET hot-carrier induced gate current simulation by self-consistent silicon/oxide Monte Carlo device simulation,” in Proc. Simulation of Semiconductor Processes and Devices (SISPAD), pp. 231–234, 2002.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Transient Conditions: Program and Erase. In: Floating Gate Devices: Operation and Compact Modeling. Springer, Boston, MA. https://doi.org/10.1007/1-4020-2613-7_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2613-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7731-9

  • Online ISBN: 978-1-4020-2613-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics