Skip to main content
  • 783 Accesses

Conclusion

The elastic stress concentration factor depend on the weld toe radius, weld angle, loading mode and geometry. Specific analytical formulae from Nihei et al. [9.1], Skorupa et al.[9.3], Niu and Glinka [9.5] describe the influence of theses parameters on the kt value. The use of this parameter is limited by plastic relaxation and limitations of the ‘hot spot’ approach.

Traditional design of welded joints against fatigue is made according to codes such as Eurocode III [9.8], the geometric and effective stress approach [9.7] and the linearised stress code [9.9]. The design principle is a specific fatigue reference curve for each class of weld excluding the influence of material properties.

Innovative methods such as the local strain [9.10] and volumetric methods [9.11] take into account, in a precise manner, the cyclic material behaviour.

Recent methods which consider fatigue initiation and crack growth is relevant to the local approach adopting the concept of notch stress intensity factor [9.13; 9.17]. The synergic effect between mechanical loading and corrosion in welded joints can be seen by applying a model which couples the effective stress and the corrosion current [9.17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nihei. M., Sasaki. E., Kanad. M. and Inagaki. M. (1981). ‘Statistical Analysis on Fatigue Strength of Arc-Welded Joints Using Covered Electrodes Under Various Welding Conditions With Particular Attention to toe Shape’. Transactions of National Research Institute for Metals, 23, Nº.1.

    Google Scholar 

  2. Richards. K.G. (1969). ‘Fatigue Strength of Welded Structures’. The Welding Institute.

    Google Scholar 

  3. Skorupa. M., Braam. H. and Prij. J. (1987). ‘Applicability of approximate KI solutions towards cracks at weld toes’. Eng. fract. Mech. 26, pp. 669–681.

    Google Scholar 

  4. Ikeda. K., Denon. S., Godai T. and Ogawa. T. (1978). ‘Improvement of the Fatigue Strength of Fillet Welded Joints in 780 N/mm2 High Strength Steel’. Welding Research International, 8, Nº.1.

    Google Scholar 

  5. Niu. X. and Glinka. G., (1987). ‘The weld profile effect on stress intensity factor in weldments’. Int. J. Fracture, 35, pp. 3–20.

    Google Scholar 

  6. Machida. R. (1991). SR202 Committee, Research on Fatigue Design and Quality of Welded Parts in Offshore Structures Shipbld. Research Assoc. Japan. Nº. 395.

    Google Scholar 

  7. BSI Standard. (1991). ‘Guidance on methods for assessing the acceptability of flaws in fusion welded structures’. PD 6493.

    Google Scholar 

  8. Eurocode 3. (1992). ‘Design of steel structures’. National Application Document — Part 1–1: General rules and rules for buildings — Chapter 9: Fatigue.

    Google Scholar 

  9. ISO Standard Proposal. (1996). ‘Recommendations for fatigue design of welded joins and components’. IIW document XIII-1539-96/XV-pp 845–96.

    Google Scholar 

  10. Atzori. B., Blasi. G. and Pappaletttere. C. (1985). ‘Evaluation of fatigue strength of welded structures by local strain measurements’. Experimental Mechanics, Nº25-2, pp 129–139.

    Google Scholar 

  11. Boukharouba. T. Gilgert. J. and Pluvinage. G; (1998). ‘Role des Concentrations de Contrainte dans la fatigue des joints soudés’. Congrès AFIAP, Paris.

    Google Scholar 

  12. Tovo. R. Lazzarin. P. (1999). ‘Relationships between local and structural stress in the evaluation of the weld toe stress distribution’. International Journal of Fatigue, vol 21, pp 1063–1078.

    Article  Google Scholar 

  13. Williams. M.L. (1952). ‘Stress singularities resulting from various boundary conditions in angular corners of plates in extension’. Journal of Applied Mechanics, 19, pp 526–528.

    Google Scholar 

  14. Verreman. Y.E. et Nie. B. (1996). ‘Early development of fatigue cracking at manual fillet welds”. Fatigue and Fracture of Engineering Materials and Structures, Vol Nº19, pp 669–681.

    Google Scholar 

  15. Creager. M. and Paris P.C. (1967). ‘Elastic field equations for blunt cracks with reference to stress corrosion cracking’. International Journal of Fracture, 3, pp 247–252.

    Google Scholar 

  16. Glincka. G. and Newport. A. (1967). ‘Universal features of elastic notch tip stress fields’. International Journal of Fatigue, 9, pp 143–150.

    Google Scholar 

  17. Panasyuk. V.V, Dmyktrakh. M.I., Pluvinage. G and Quylafku. G. (1999). ‘On corrosion fatigue emanating from notches: Stress field and electrochemistry’ (Conference on corrosion), Lviv.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Role of Stress Concentration on Fatigue of Welded Joints. In: Fracture and Fatigue Emanating from Stress Concentrators. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2612-9_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2612-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1609-7

  • Online ISBN: 978-1-4020-2612-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics