Skip to main content

Abstract

The Holographic Time of Flight (HTOF) method for the all-optical, contact-less investigation of charge transport in non-centrosymmetric insulators and semiconductors is based on the instantaneous photoexcitation of a spatially modulated distribution of charge carriers and on the linear electro-optic (Pockels) effect to visualize a charge-displacement by its associated refractive index change. It can be used with a free-carrier density so low that it does not otherwise have any detectable influence on the optical properties of a material, and with short free carrier lifetimes of the order of nanoseconds or less. HTOF is an especially striking example of how several independent linear and nonlinear light-matter interaction mechanisms can join to deliver a peculiar wave-mixing effect that is directly determined by a seemingly unrelated microscopic parameter: the free-carrier mobility. This chapter reviews the HTOF method and provides a detailed theoretical treatment that will be invaluable to experimentalists interested in applying this method to new materials. The author discusses the experimental parameters that influence the HTOF results and presents the basic assumptions and experimental conditions that allow the characterization of charge transport in the bulk of a material, with a sub-nanosecond time resolution only limited by the duration of the laser pulses, and for transport lengths down to a fraction of a micrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Vaezi-Nejad, ‘Instrumentation Aspects and Applications of Charge Transport Measurement Techniques’, Measurement 17(4), 267–277 (1996).

    Article  Google Scholar 

  2. J. R. Haynes and W. Shockley, ‘The Mobility and Life of Injected Holes and Electrons in Germanium’, Phys. Rev. 81(5), 835 (1951).

    Article  CAS  Google Scholar 

  3. W. E. Spear, Proc. Phys. Soc. London, Sect. B 70, 669 (1957).

    Article  Google Scholar 

  4. W. E. Spear, Proc. Phys. Soc. London, Sect. B 76, 826 (1960).

    CAS  Google Scholar 

  5. R. G. Kepler, ‘Charge Carrier Production and Mobility in Anthracene Crystals’, Phys. Rev. 119, 1226 (1960).

    Article  CAS  Google Scholar 

  6. F. K. Dolezalek, in Photoconductivity and Related Phenomena, J. Mort and D. M. Pai (eds.) (Elsevier/Noth Holland, 1976).

    Google Scholar 

  7. D. M. Pai and B. E. Springett, ‘Physics of Electrophotography’, Rev. Mod. Phys. 65(1), 163 (1993).

    Article  CAS  Google Scholar 

  8. R. I. Devlen and E. A. Schiff, ‘Optically Detected Photocarrier Transport in Amorphous Silicon: A Review’, J. of Non-Cryst. Solids 141, 106–118 (1992).

    CAS  Google Scholar 

  9. J. P. Partanen, J. M. C. Jonathan and R. W. Hellwarth, ‘Direct Determination of Electron Mobility in Photorefractive Bi12SiO20 (BSO) by Holographic Time-of-Flight Technique’, Appl. Phys. Lett. 57(23), 2404–2406 (1990).

    Article  CAS  Google Scholar 

  10. G. Pauliat, A. Villing, J. C. Launay and G. Roosen, ‘Optical Measurements of Charge-Carrier Mobilities in Photorefractive Sillenite Crystals’, J. Opt. Soc. Am. B7(8), 1481–1486 (1990).

    Google Scholar 

  11. J.P. Partanen, P. Nouchi, J. M. C. Jonathan and R. W. Hellwarth, ‘Comparison Between Holographic and Transient-Photocurrent Measurements of Electron Mobility in Photorefractive Bi12SiO20’, Phys. Rev. B44, 1487–1491 (1991).

    Google Scholar 

  12. P. Nouchi, J. P. Partanen and R. W. Hellwarth, ‘Temperature Dependence of the Electron Mobility in Photorefractive Bi12SiO20’, J. Opt. Soc. Am. B9(98), 1428–1431 (1992).

    Google Scholar 

  13. P. Nouchi, J. P. Partanen and R. W. Hellwarth, ‘Simple Transient Solutions for the Photoconduction and the Space-Charge Field in a Photorefractive Material with Shallow Traps’, Phys. Rev. B47(23), 15581–15587 (1992).

    Google Scholar 

  14. I. Biaggio, M. Zgonik and P. Günter, ‘Photorefractive Effects Induced by Picosecond Light Pulses in Reduced KNbO3’, J. Opt. Soc. Am. B9(8), 1480–1487 (1992).

    Google Scholar 

  15. M. Ewart, I. Biaggio, M. Zgonik and P. Günter, ‘Pulsed-Photoexcitation Studies in Photorefractive KNbO3’, Phys. Rev. B49(8), 5263–5273 (1994).

    Google Scholar 

  16. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink and G. Hadziioannou, ‘Holographic Time-of-Flight Measurements of the Hole-Drift Mobility in a Photorefractive Polymer’, Phys. Rev. B52(20), R14324–R14327 (1995).

    Google Scholar 

  17. G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. ten Brinke and G. Hadziiannou, ‘The Influence of Disorder on the Space Charge Filed Formation in Photorefractive Polymers’, J. Phys. D: Appl. Phys. 29, 2045–2048 (1996).

    Article  CAS  Google Scholar 

  18. D. Mahgerefteh, D. Kirillov, R. S. Cudney, G. D. Bacher, R. M. Pierce and J. Feinberg, ‘Anisotropy of the Hole Drift Mobility in Barium Titanate’, Phys. Rev. B53(11), 7094–7098 (1996).

    Google Scholar 

  19. P. Bernasconi, I. Biaggio, M. Zgonik and P. Günter, ‘Anisotropy of the Electron and Hole Drift Mobility in KNbO3 and BaTiO3’, Phys. Rev. Lett. 78, 106 (1997).

    CAS  Google Scholar 

  20. I. Biaggio, R. W. Hellwarth and J. P. Partanen, ‘Band Mobility of Photoexcited Electrons in Bi12SiO20’, Phys. Rev. Lett. 78, 891–894 (1997).

    Article  CAS  Google Scholar 

  21. P. Bernasconi, G. Montemezzani, I. Biaggio and P. Günter, ‘Characterization of the Bipolar Mobility in Polar Materials by Interband Photoexcitation’, Phys. Rev. B56, 12196–12200 (1997).

    Google Scholar 

  22. P. Yeh, ‘Introduction to Photorefractive Nonlinear Optics’, Wiley series in Pure and Applied Optics (John Wiley & Sons, 1993).

    Google Scholar 

  23. P. Günter and M. Zgonik, ‘Clamped-Unclamped Electro-Optic Coefficient Dilemma in Photorefractive Phenomena’, Opt. Lett. 16(23), 1826–1828 (1991).

    Google Scholar 

  24. M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry and P. Günter, ‘Material Constants of KNbO3 Relevant for Electro-and Acousto-Optics’, J. Appl. Phys. 74, 1287 (1993).

    Article  CAS  Google Scholar 

  25. J. M. C. Jonathan, G. Roosen and P. Roussignol, ‘Time-Resolved Buildup of a Photorefractive Grating Induced in Bi12SiO20 by Picosecond Light Pulses’, Opt. Lett. 13, 224 (1988).

    CAS  Google Scholar 

  26. M. Zgonik, I. Biaggio, U. Bertele and P. Günter, ‘Degenerate Four-Wave Mixing in KNbO3: Picosecond and Photorefractive Nanosecond Response’, Opt. Lett. 16, 977–979 (1991).

    Article  CAS  Google Scholar 

  27. I. Biaggio and G. Roosen, ‘Influence of Shallow Traps on the Enhancement of the Photorefractive Grating Amplitude by a High-Frequency Alternating Electric Field: A Probabilistic Analysis’, J. Opt. Soc. Am. B13(10), 2306–2314 (1996).

    Google Scholar 

  28. A. Ennouri, M. Tapiero, J. P. Vola and J. P. Zielinger, ‘Determination of the Mobility and Transport Properties of Photorcarriers in Bi12GeO20 by the Time-of-Flight Technique’, J. Appl. Phys. 74(4), 2180–2191 (1993).

    Article  CAS  Google Scholar 

  29. P. Nouchi, J. P. Partanen and R. W. Hellwarth, OSA Technical Digest Series — Optical Society of America, Vol. 12, in Conference on Lasers and Electro-Optics, 1992 (Washington, D.C., 1992), p. 84.

    Google Scholar 

  30. M. Wintermantel and I. Biaggio, ‘Temperature Dependent Electron Mobility and Large Polaron Interpretation in Bi12SiO20’, Phys. Rev. B67, 165108 (2003).

    Google Scholar 

  31. R. W. Hellwarth and I. Biaggio, ‘Mobility of an Electron in a Multi-Mode Polar Lattice’, Phys. Rev. B60(2), (1999).

    Google Scholar 

  32. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink and G. Hadziioannou, ‘Transient Behavior of Photorefractive Gratings in a Polymer’, Appl. Phys. Lett. 67, 455 (1995).

    Article  CAS  Google Scholar 

  33. H. Baessler, G. Herrmann, N. Riehl and G. Vaubel, J. Phys. Chem. Solids 30, 1579 (1969).

    Article  CAS  Google Scholar 

  34. H. Scher, M. F. Shlesinger and J. T. Bendler, ‘Time-Scale Invariance in Transport and Relaxation’, Physics Today 44(1), 26–34 (1991).

    Google Scholar 

  35. J. Wolff, S. Schluter, U. Hofmann, D. Haarer and S. J. Zilker, ‘Speed Enhancement of Photorefractive Polymers by Means of Light-Induced Filling of Trapping States’, J. Opt. Soc. Am. B16, 1080 (1999).

    Google Scholar 

  36. S. J. Zilker, M. Grasruck, J. Wolff, S. Schloter, A. Leopold, M. A. Koľchenko, U. Hofmann, A. Schreiber, P. Strohriegl, C. Hohle and D. Haarer, ‘Characterization of Charge Generation and Transport in a Photorefractive Organic Glass: Comparison between Conventional and Holographic Time-of-Flight Experiments’, Chem. Phys. Lett. 306, 285 (1999).

    Article  CAS  Google Scholar 

  37. U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, A. Schloter, C. Hohle, P. Strohriegl, D. Haarer and S. J. Zilker, ‘Correlation between Dispersivity of Charge Transport and Holographic Response Time in an Organic Photorefractive Glass’, J. Phys. Chem. B104, 3887 (2000).

    Google Scholar 

  38. A. Leopold, M. Grasruck, U. Hofmann, M. A. Koľchenko and S. J. Zilker, ‘Length Scales of Charge Transport in Organic Photorefractive Materials’, Appl. Phys. Lett. 76, 1644 (2000).

    Article  CAS  Google Scholar 

  39. I. Biaggio, ‘Photorefractive Effects Induced by Short Light Pulses’, Ph.D. Thesis No. 10009, Fig. 5.26, ETH Zurich, Switzerland (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Biaggio, I. (2003). Holographic Time of Flight. In: Peled, A. (eds) Photo-Excited Processes, Diagnostics and Applications. Springer, Boston, MA. https://doi.org/10.1007/1-4020-2610-2_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2610-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7527-8

  • Online ISBN: 978-1-4020-2610-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics