Skip to main content

Coat Proteins

  • Chapter

Part of the book series: Proteins and Cell Regulation ((PROR,volume 1))

Abstract

A major cellular function of Arfs is the regulation of membrane traffic. Many studies, using several independent approaches, have shown that activated Arfs directly recruit coat complexes to membranes. These coats sort cargo and facilitate vesicle formation. Three classes of Arf-dependent coat proteins or complexes have been described so far, including COPs, adaptins, and GGAs. This chapter focuses on aspects of Arf-dependent coat proteins and complexes. We will discuss the binding between Arfs and coats, with an emphasis on COPI and GGAs, as well as the localization and function of each coat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, C., Hinners, I., and Tooze, S. A. (2000). Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J. Biol. Chem., 275, 21862–21869.

    Article  CAS  PubMed  Google Scholar 

  • Austin, C., Boehm, M., and Tooze, S. A. (2002). Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry, 41, 4669–4677.

    Article  CAS  PubMed  Google Scholar 

  • Balch, W. E., Kahn, R. A., and Schwaninger, R. (1992). ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. J. Biol. Chem., 267, 13053–13061.

    CAS  PubMed  Google Scholar 

  • Barlowe, C., ďEnfert, C., and Schekman, R. (1993). Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem., 268, 873–879.

    CAS  PubMed  Google Scholar 

  • Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M. F., Ravazzola, M., Amherdt, M., and Schekman, R. (1994). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 77, 895–907.

    Article  CAS  PubMed  Google Scholar 

  • Beckers, C. J., and Balch, W. E. (1989). Calcium GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J. Cell Biol., 108, 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  • Blumstein, J., Faundez, V., Nakatsu, F., Saito, T., Ohno, H., and Kelly, R. B. (2001). The neuronal form of adaptor protein-3 is required for synaptic vesicle formation from endosomes. J. Neurosci., 21, 8034–8042.

    CAS  PubMed  Google Scholar 

  • Boehm, M., Aguilar, R. C., and Bonifacino, J. S. (2001). Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (Arfs). EMBO J., 20, 6265–6276.

    CAS  PubMed  Google Scholar 

  • Boman, A. L., Taylor, T. C., Melancon, P., and Wilson, K. L. (1992). A role for ADP-ribosylation factor in nuclear vesicle dynamics. Nature, 358, 512–514.

    Article  CAS  PubMed  Google Scholar 

  • Boman, A. L., Zhang, C., Zhu, X., and Kahn, R. A. (2000). A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell, 11, 1241–1255.

    CAS  PubMed  Google Scholar 

  • Boman, A. L. (2001). GGA proteins: new players in the sorting game. J. Cell Science, 114, 3413–3418.

    CAS  PubMed  Google Scholar 

  • Boman, A. L., Salo, P. D., Hauglund, M. J., Strand, N. L., Rensink, S. J., and Zhdankina, O. (2002). Arf interaction is not sufficient for yeast Gga function or localization. Mol. Biol. Cell, 13, 3078–3095.

    Article  CAS  PubMed  Google Scholar 

  • Cosson, P., and Letourneur, F. (1994). Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science, 263, 1629–1631.

    CAS  PubMed  Google Scholar 

  • Cosson, P., and Letourneur, F. (1997). Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting. Curr. Opin. Cell Biol., 9, 484–487.

    Article  CAS  PubMed  Google Scholar 

  • Costaguta, G., Stefan, C. J., Bensen, E. S., Emr, S. D., and Payne, G. S. (2001). Yeast gga coat proteins function with clathrin in golgi to endosome transport. Mol. Biol. Cell, 12, 1885–1896.

    CAS  PubMed  Google Scholar 

  • Cowles, C. R., Odorizzi, G., Payne, G. S., and Emr, S. D. (1997). The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell, 91, 109–118.

    Article  CAS  PubMed  Google Scholar 

  • DelľAngelica, E. C., Ohno, H., Ooi, C. E., Rabinovich, E., Roche, K. W., and Bonifacino, J. S. (1997). AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J., 16, 917–928.

    Google Scholar 

  • DelľAngelica, E. C., Klumperman, J., Stoorvogel, W., and Bonifacino, J. S. (1998). Association of the AP-3 adaptor complex with clathrin. Science, 280, 431–434.

    Google Scholar 

  • DelľAngelica, E. C., Mullins, C., and Bonifacino, J. S. (1999). AP-4, a novel protein complex related to clathrin adaptors. J. Biol. Chem., 274, 7278–7285.

    Google Scholar 

  • DelľAngelica, E. C., Puertollano, R., Mullins, C., Aguilar, R. C., Vargas, J. D., Hartnell, L. M., and Bonifacino, J. S. (2000). GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol., 149, 81–94.

    Google Scholar 

  • Dennes, A., Madsen, P., Nielsen, M. S., Petersen, C. M., and Pohlmann, R. (2002). The yeast Vps10p cytoplasmic tail mediates lysosomal sorting in mammalian cells and interacts with human GGAs. J. Biol. Chem., 277, 12288–12293.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, J. G., Kahn, R. A., Lippincott-Schwartz, J., and Klausner, R. D. (1991). Binding of Arf and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science, 254, 1197–1199.

    CAS  PubMed  Google Scholar 

  • Doray, B., Bruns, K., Ghosh, P., and Kornfeld, S. A. (2002). Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proc. Natl. Acad. Sci,. USA, 99, 8072–8077.

    Article  CAS  PubMed  Google Scholar 

  • Faundez, V., Horng, J. T., and Kelly, R. B. (1997). ADP ribosylation factor 1 is required for synaptic vesicle budding in PC12 cells. J. Cell Biol., 138, 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Friend, D. S., and Farquhar, M. G. (1967). Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol., 35, 357–376.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. (1999). Structural and functional analysis of the Arf1-ArfGAP complex reveals a role for coatomer in GTP hydrolysis. Cell, 96, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. (2000). Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell, 100, 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Hirst, J., and Robinson, M. S. (1998). Clathrin and adaptors. Biochim. Biophys. Acta, 1404, 173–193.

    CAS  PubMed  Google Scholar 

  • Hirst, J., Bright, N. A., Rous, B., and Robinson, M. S. (1999). Characterization of a fourth adaptor-related protein complex. Mol. Biol. Cell, 10, 2787–2802.

    CAS  PubMed  Google Scholar 

  • Hirst, J., Lui, W. W., Bright, N. A., Totty, N., Seaman, M. N., and Robinson, M. S. (2000). A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol., 149, 67–80.

    Article  CAS  PubMed  Google Scholar 

  • Kato, Y., Misra, S., Puertollano, R., Hurley, J. H., and Bonifacino, J. S. (2002). Phosphoregulation of sorting signal VHS domain interactions by a direct electrostatic mechanism. Nat. Struct. Biol., 9, 532–536.

    CAS  PubMed  Google Scholar 

  • Kuai, J., Boman, A. L., Arnold, R. S., Zhu, X., and Kahn, R. A. (2000). Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. J. Biol. Chem., 275, 4022–4032.

    Article  CAS  PubMed  Google Scholar 

  • Lanoix, J., Ouwendijk, J., Lin, C. C., Stark A., Love, H. D., Ostermann, J., and Nilsson, T. (1999). GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J., 18, 4935–4948.

    Article  CAS  PubMed  Google Scholar 

  • Lenhard, J. M., Kahn, R. A., and Stahl, P. D. (1992). Evidence for ADP-ribosylation factor (Arf) as a regulator of in vitro endosome-endosome fusion. J. Biol. Chem., 267, 13047–13052.

    CAS  PubMed  Google Scholar 

  • Meyer, C., Zizioli, D., Lausmann, S., Eskelinen, E. L., Hamann, J., Saftig, P., von Figura, K., and Schu, P. (2000). mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J., 19, 2193–2203.

    CAS  PubMed  Google Scholar 

  • Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S., and Hurley, J. H. (2002). Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature, 415, 933–937.

    Article  CAS  PubMed  Google Scholar 

  • Ooi, C. E., DelľAngelica, E. C., and Bonifacino, J. S. (1998). ADP-Ribosylation factor 1 (Arf1) regulates recruitment of the AP-3 adaptor complex to membranes. J. Cell Biol., 142, 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Oprins, A., Duden, R., Kreis, T. E., Geuze, H. J., and Slot, J. W. (1993). Beta-COP localizes mainly to the cis-Golgi side in exocrine pancreas. J. Cell Biol., 121, 45–59.

    Article  Google Scholar 

  • Orci, L., Glick, B. S., and Rothman, J. E. (1986). A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell, 46, 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Orci, L., Malhotra, V., Amherdt, M., Serafini, T., and Rothman, J. E. (1989). Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell, 56, 357–368.

    Article  CAS  PubMed  Google Scholar 

  • Osterman, J., Orci, L., Tani, K., Amherdt, M., Ravazzola, M., Elazar, Z., and Rothman, J. E. (1993). Stepwise assembly of functionally active transport vesicles. Cell, 75, 1015–1025.

    Google Scholar 

  • Pepperkok, R., Whitney, J. A., Gomez, M., and Kreis, T. E. (2000). COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J. Cell Sci., 113, 135–144.

    CAS  PubMed  Google Scholar 

  • Poussu, A., Lohi, O., and Lehto, V. P. (2000). Vear, a novel Golgi-associated protein with VHS and gamma-adaptin “Ear” domains. J. Biol. Chem., 275, 7176–7183.

    Article  CAS  PubMed  Google Scholar 

  • Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M., and Bonifacino, J. S. (2001). The ggas promote arf-dependent recruitment of clathrin to the tgn. Cell, 105, 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishna, H., Klausner, R. D., and Donaldson, J. G. (1996). Aluminum fluoride stimulates surface protrusions in cells overexpressing the Arf6 GTPase. J. Cell Biol., 134, 935–947.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M. S., and Kreis, T. E. (1992). Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators. Cell, 69, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Roth, T. F., and Porter, K. R. (1964). Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J. Cell Biol., 20, 313–332.

    CAS  PubMed  Google Scholar 

  • Seaman, M. N., Sowerby, P. J., and Robinson, M. S. (1996). Cytosolic and membrane-associated proteins involved in the recruitment of AP-1 adaptors onto the trans-Golgi network. J. Biol. Chem., 271, 25446–25451.

    CAS  PubMed  Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell, 67, 239–253.

    Article  CAS  PubMed  Google Scholar 

  • Shiba, T., Takatsu, H., Nogi, T., Matsugaki, N., Kawasaki, M., Igarashi, N., Suzuki, M., Kato, R., Earnest, T., Nakayama, K., and Wakatsuki, S. (2002). Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature, 415, 937–941.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, F., Bright, N. A., West, M. A., Newman, L. S., Darnell, R. B., and Robinson, M. S. (1996). A novel adaptor-related protein complex. J. Cell. Biol., 133, 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, F., Peden, A. A., Christopoulou, L., and Robinson, M. S. (1997). Characterization of the adaptor-related protein complex, AP-3. J. Cell Biol., 137, 835–845.

    Article  CAS  PubMed  Google Scholar 

  • Springer, S., Spang, A., and Schekman, R. (1991). A primer on vesicle budding. Cell, 97, 145–148.

    Google Scholar 

  • Stamnes, M. A., and Rothman, J. E. (1993). The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell, 73, 999–1005.

    Article  CAS  PubMed  Google Scholar 

  • Stearns, T., Kahn, R. A., Botstein, D., and Hoyt, M. A. (1990). ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol. Cell. Biol., 10, 6690–6699.

    CAS  PubMed  Google Scholar 

  • Stearns, T., Willingham, M. C., Botstein, D., and Kahn, R. A. (1990). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl. Acad. Sci., USA, 87, 1238–1242.

    CAS  PubMed  Google Scholar 

  • Stepp, J. D., Pellicena-Palle, A., Hamilton, S., Kirchhausen, T., and Lemmon, S. K. (1995). A late Golgi sorting function for Saccharomyces cerevisiae Apm1p, but not for Apm2p, a second yeast clathrin AP medium chain-related protein. Mol. Biol. Cell, 6, 41–58.

    CAS  PubMed  Google Scholar 

  • Stepp, J. D., Huang, K., and Lemmon, S. K. (1997). The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J. Cell Biol., 139, 1761–1774.

    Article  CAS  PubMed  Google Scholar 

  • Storrie, B., and Nilsson, T. (2002). The Golgi apparatus: balancing new with old. Traffic, 3 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Szafer, E., Pick, E., Rotman, M., Zuck, S., Huber, I., and Cassel, D. (2000). Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1. J. Biol. Chem., 275, 23615–23619.

    Article  CAS  PubMed  Google Scholar 

  • Szafer, E., Rotman, M., and Cassel, D. (2001). Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane. J. Biol. Chem., 276, 47834–47839.

    CAS  PubMed  Google Scholar 

  • Takatsu, H., Yoshino, K., and Nakayama, K. (2000). Adaptor gamma ear homology domain conserved in gamma-adaptin and GGA proteins that interact with gamma-synergin. Biochem. Biophys. Res. Comm., 271, 719–725.

    Article  CAS  PubMed  Google Scholar 

  • Takatsu, H., Yoshino, K., Toda, K., and Nakayama, K. (2002). GGAproteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem. J., 365, 369–78.

    Article  CAS  PubMed  Google Scholar 

  • Tang, B. L., Peter, F., Krijnse-Locker, J., Low, S. H., Griffiths, G., and Hong, W. (1997). The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus. Mol. Cell. Biol., 17, 256–266.

    CAS  PubMed  Google Scholar 

  • Taylor, T. C., Kahn, R. A., and Melancon, P. (1992). Two distinct members of the ADP-ribosylation factor family of GTP-binding proteins regulate cell-free intra-Golgi transport. Cell, 70, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Traub, L. M., Ostrom, J. A., and Kornfeld, S. (1993). Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol., 123, 561–573.

    Article  CAS  PubMed  Google Scholar 

  • Waters, M. G., Serafini, T., and Rothman, J. E. (1991). ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature, 349, 248–251.

    Article  CAS  PubMed  Google Scholar 

  • West, M. A., Bright, N. A., and Robinson, M. S. (1997). The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. J. Cell Biol., 138, 1239–1254.

    Article  CAS  PubMed  Google Scholar 

  • Yeung, B. G., Phan, H. L., and Payne, G. S. (1999). Adaptor complex-independent clathrin function in yeast. Mol. Biol. Cell, 10, 3643–3659.

    CAS  PubMed  Google Scholar 

  • Zhang, C. J., Rosenwald, A. G., Willingham, M. C., Skuntz, S., Clark, J., and Kahn, R. A. (1994). Expression of a dominant allele of human Arf1 inhibits membrane traffic in vivo. J. Cell Biol., 124, 289–300.

    CAS  PubMed  Google Scholar 

  • Zhao, L., Helms, J. B., Brunner, J., and Wieland, F. T. (1999). GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J. Biol. Chem., 274, 14198–14203.

    CAS  PubMed  Google Scholar 

  • Zhdankina, O., Strand, N. L., Redmond, J. M., and Boman, A. L. (2001). Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast, 18, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Boman, A. L., Kuai, J., Cieplak, W., and Kahn, R. A. (2000). Effectors increase the affinity of GTP to Arf and lead to increased binding. J. Biol. Chem., 275, 13465–13475.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Boman, A., Nilsson, T. (2004). Coat Proteins. In: ARF Family GTPases. Proteins and Cell Regulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2593-9_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2593-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1719-3

  • Online ISBN: 978-1-4020-2593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics