Skip to main content

Phospholipase D, Arfaptins and Arfophilin

  • Chapter
ARF Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 1))

  • 146 Accesses

Abstract

The effects of Arfs on three potential effectors (phospholipase D, Arfaptins and Arfophilin) are described. Arfs activate mammalian PLD1 in vitro, but their roles in the regulation of PLD in vivo are not well defined. Direct binding of Arfs to PLD1 has not been demonstrated in vitro and activation may involve PI(4,5)P2, which binds to the enzyme. Evidence for a role of Arf6 in the regulation of PLD in vivo is accumulating and may partly involve a PIP kinase that is activated by this Arf. The role of Arf-stimulated PLD in Golgi traffic remains controversial and evidence for and against this is presented. The properties of the Arf-binding proteins Arfaptins 1 and 2 are described, and interactions of POR1, a truncated form of Arfaptin 2, with Arfs and Rac1 are discussed. A hypothesis for Arfaptin 2 as a communicator between these two small GTPases in vivo is presented. A possible role of Arfaptin 2 in Huntington’s disease is discussed. Finally, the properties of Arfophilin, which selectively binds ARFs 4, 5 and 6 are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham, A., Loissis, C., O’Brien, L., and Brindley, D. N. (1997). Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. J. Biol. Chem., 272, 1069–1075.

    CAS  PubMed  Google Scholar 

  • Al-Awar, O., Radhakrishna, H., Powell, N. N., and Donaldson, J. G. (2000). Separation of membrane trafficking and actin remodeling functions of Arf6 with an effector domain mutant. Mol. Cell. Biol., 20, 5998–6007.

    Google Scholar 

  • Anderson, R. A., Boronenkov, I. V., Doughman, S. D., Kunz, J., and Loijens, J. C. (1999). Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem., 274, 9907–9910.

    CAS  PubMed  Google Scholar 

  • Andresen, B. T., Jackson, E. K., and Romero, G. G. (2001). Angiotensin II signaling to phospholipase D in renal microvascular smooth muscle cells in SHR. Hepatology, 37, 635–639.

    CAS  Google Scholar 

  • Bi, K., Roth, M. G., and Ktistakis, N. T. (1997). Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol., 7, 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Bourgoin, S., Harbour, D., Desmarais, Y., Takai, Y., and Beaulieu, A. (1995). Low molecular weight GTP-binding proteins in HL-60 granulocytes. J. Biol. Chem., 270, 3172–3178.

    CAS  PubMed  Google Scholar 

  • Brown, F. D., Thomas, N., Saqib, K. M., Clark, J. M., Powner, D., Thompson, N. T., Solari, R., and Wakelam, M. J. O. (1998). Phospholipase D1 localizes to secretory granules and lysosomes and is plasma membrane translocated on cellular stimulation. Curr. Biol., 8, 835–838.

    CAS  PubMed  Google Scholar 

  • Brown, H. A., Gutowski, S., Kahn, R. A., and Sternweis, P. C. (1995). Partial purification and characterization of Arf-sensitive phospholipase D from porcine brain. J. Biol. Chem., 270, 14935–14943.

    CAS  PubMed  Google Scholar 

  • Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C., and Sternweis, P. C. (1993). ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell, 75, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • Caumont, A.-S., Galas, M.-C., Vitale, N., Aunis, D., and Bader, M.-F. (1998). Regulated exocytosis in chromaffin cells. Translocation of Arf6 stimulates a plasma membrane-associated phospholipase D. J. Biol. Chem., 273, 1373–1379.

    Article  CAS  PubMed  Google Scholar 

  • Caumont, A.-S., Vitale, N., Gensse, M., Galas, M-C, Casanova, J. E., and Bader, M.-F. (2000). Identification of a plasma membrane-associated guanine nucleotide exchange factor for Arf6 in chromaffin cells. Possible role in the regulated exocytotic pathway. J. Biol. Chem., 275, 15637–15644.

    Article  CAS  PubMed  Google Scholar 

  • Cavenagh, M. M., Whitney, J. A., Carroll, K., Zhang, C.-J., Bowman, A.L., Rosenwald, A. G., Mellman, I., and Kahn, R. A. (1996). Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J. Biol. Chem., 271, 21767–21774.

    CAS  PubMed  Google Scholar 

  • Chen, Y.-G., Siddhanta, A., Austin, C. D., Hammond, S. M., Sung, T.-C., Frohman, M. A., Morris, A. J., and Shields, D. (1997). Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J. Cell Biol. 138, 495–504

    CAS  PubMed  Google Scholar 

  • Cherfils, J. (2001). Structural mimicry of DH domains by Arfaptin suggests a model for the recognition of Rac-GDP by its guanine nucleotide exchange factor. FEBS Lett., 507, 280–284.

    Article  CAS  PubMed  Google Scholar 

  • Cockcroft, S. (1996). Arf-regulated phospholipase D: a potential role in membrane traffic. Chem. Physics Lipids, 80, 59–80.

    Article  CAS  Google Scholar 

  • Cockcroft, S., Thomas, G. M. H., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O., and Hsuan, J. J. (1994). Phospholipase D: a downstream effector of Arf in granulocytes. Science, 263, 523–526.

    CAS  PubMed  Google Scholar 

  • Colley, W. C., Sung, T.-C., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., Bar-Sagi, D., Morris, A. J., and Frohman, M. A. (1997). Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol., 7, 191–20

    Article  CAS  PubMed  Google Scholar 

  • D’Souza-Schorey, C., Li, G., Colombo, M. I., and Stahl, P. D. (1995). A regulatory role for Arf6 in receptor-mediated endocytosis. Science, 267, 1175–1178.

    Google Scholar 

  • D’Souza-Schorey, C., Boshans, R. L., McDonought, M., Stahl, P. D., and Van Aelst, L. (1997). A role for POR1, a Rac1-interacting protein, in Arf6-mediated cytoskeletal rearrangements. EMBO J., 16, 5445–5454.

    Google Scholar 

  • Exton, J. H. (2002). Phospholipase D — structure, regulation and function. In S. G. Amara, E. Bamberg, M. P. Blaustein, H. Grunick, R. J. Gottingen, W. J. Lederer, A. Miyajima, H. Murer, N. Pfanner, G. Schultz, M. Schweiger (Eds.), Reviews of physiology, biochemistry and pharmacology (pp. 1–94). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Fensome, A., Whatmore, J., Morgan, C., Jones, D., and Cockcroft, S. (1998). ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. J. Biol. Chem., 273, 13157–13164.

    Article  CAS  PubMed  Google Scholar 

  • Franco, M., Peters, P. J., Boretton, J., van Donselaar, E., Neri, A., D’Souza-Schorey, C., and Chavrier, P. (1999). EFA6 a Sec7 domain-containing exchange factor for Arf6 coordinates membrane recycling and actin cytoskeleton organization. EMBO J., 18, 1480–1491.

    Article  CAS  PubMed  Google Scholar 

  • Freyberg, Z., Sweeney, D., Siddhanta, A., Bourgoin, S., Frohman, M., and Shields, D. (2001). Intracellular localization of phospholipase D1 in mammalian cells. Mol. Biol. Cell, 12, 943–955.

    CAS  PubMed  Google Scholar 

  • Gaschet, J., and Hsu, V. W. (1999). Distribution of Arf6 between membrane and cytosol is regulated by its GTPase cycle. J. Biol. Chem., 274, 20040–20045.

    Article  CAS  PubMed  Google Scholar 

  • Geny, B., Fensome, A., and Cockcroft, S. (1993). Rat brain cytosol contains a factor which reconstitutes guanine-nucleotide-binding-protein-regulated phospholipase-D activation in HL 60 cells previously permeabilized with streptolysin O. Eur. J. Biochem., 215, 389–396.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, D. E., Thomas, G. M. H., O’Sullivan, A. J., and Burgoyne, R. D. (1998). Examination of the role of ADP-ribosylation factor and phospholipase D activation in regulated exocytosis in Chromaffin and PC12 cells. J. Neurochem., 71, 2023–2033.

    CAS  PubMed  Google Scholar 

  • Godi, A., Pertile, P., Meyers, R., Marra, P., DiTullio, G., Iurisci, C., Luini, A., Corda, D., and DeMatteis, M. A. (1999). Arf mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol., 1, 280–287.

    CAS  PubMed  Google Scholar 

  • Gress, T. M., Muller-Pillasch, F., Geng, M., Zimmerhackl, F., Zehetner, G., Friess, H., Buchler, M., Adler, G., and Lehrach, H. (1996). A pancreatic cancer-specific expression profile. Oncogene, 13, 1819–1830.

    CAS  PubMed  Google Scholar 

  • Guillemain, I., and Exton, J. H. (1997). Effects of brefeldin A on phosphatidylcholine phospholipase D and inositol phospholipid metabolism in HL-60 cells. Eur. J. Biochem., 249, 812–819.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, S. M., Altshuller, Y. M., Sung, T.-C., Rudge, S. A., Rose, K., Engebrecht, J. A., Morris, A. J., and Frohman, M. A. (1995). Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem., 270, 29640–29643.

    CAS  PubMed  Google Scholar 

  • Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q.-m., Cook, S., Nozawa, Y., Prestwich, G. D., Frohman, M. A., and Morris, A. J. (1997). Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. J. Biol. Chem., 272, 3860–3868.

    CAS  PubMed  Google Scholar 

  • Hodgkin, M. N., Masson, M. R., Powner, D., Saqib, K. M., Ponting, C. P., and Wakelam, M. J. O. (2000). Phospholipase D regulation and localization is dependent upon a phosphatidylinositol 4,5-bisphosphate-specific PH domain. Curr. Biol., 10, 43–46.

    CAS  PubMed  Google Scholar 

  • Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A., and Kanaho, Y. (1999). Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein Arf6 in membrane ruffle formation. Cell, 99, 521–532.

    Article  CAS  PubMed  Google Scholar 

  • Houle, M. G., Kahn, R. A., Naccache, P. H., and Bourgoin, S. (1995). ADP-ribosylation factor translocation correlates with potentiation of GTPÎłS-stimulated phospholipase D activity in membrane fractions of HL-60 cells. J. Biol. Chem., 270, 22795–22800.

    CAS  PubMed  Google Scholar 

  • Jackson, C. L., and Casanova, J. E. (2000). Turning on Arf: the Sec7 family of guaninenucleotide-exchange factors. Trends Cell Biol., 10, 60–67.

    CAS  PubMed  Google Scholar 

  • Jenkins, G. H., Fisette, P. L., and Anderson, R. A. (1994). Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem., 269, 11547–11554.

    CAS  PubMed  Google Scholar 

  • Jones, D., Morgan, C., and Cockcroft, S. (1999). Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim. Biophys. Acta, 1439, 229–244.

    CAS  PubMed  Google Scholar 

  • Jones, D. H., Bax, B., Fensome, A., and Cockcroft, S. (1999). ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer 1. Biochem. J., 341, 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. H., Morris, J. B., Morgan, C. P., Kondo, H., Irvine, R. F., and Cockcroft, S. (2000). Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the Golgi compartment. J. Biol. Chem., 275, 13962–13966.

    CAS  PubMed  Google Scholar 

  • Joneson, T., McDonough, M., Bar-Sagi, D., and Van Aelst, L. (1996). RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science, 274, 1374–1376.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, R. A., Yucel, J. K., and Malhotra, V. (1993). Arf signaling: A potential role for phospholipase D in membrane traffic. Cell, 75, 1045–1048.

    Article  CAS  PubMed  Google Scholar 

  • Kam, Y., and Exton, J. H. (2001). Phospholipase D activity is required for actin stress fiber formation in fibroblasts. Mol. Cell. Biol., 21, 4055–4066.

    Article  CAS  PubMed  Google Scholar 

  • Kanoh, H., Williger, B.-T., and Exton, J. H. (1997). Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem., 272, 5421–5429.

    CAS  PubMed  Google Scholar 

  • Kodaki, T., and Yamashita, S. (1997). Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J. Biol. Chem., 272, 11408–11413.

    CAS  PubMed  Google Scholar 

  • Ktistakis, N. T., Brown, H. A., Sternweis, P. C., and Roth, M. G. (1995). Phospholipase D is present in Golgi-enriched membranes and its activation by ADP-ribosylation factor is sensitive to brefeldin A. Proc. Natl. Acad. Sci., USA, 92, 4952–4956.

    CAS  PubMed  Google Scholar 

  • Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C., and Roth, M. G. (1996). Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J. Cell Biol., 134, 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Kuai, J., Boman, A. L., Arnold, R. S., Zhu, X., and Kahn, R. A. (2000). Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. J. Biol. Chem., 275, 4022–4032.

    Article  CAS  PubMed  Google Scholar 

  • Lamarche, N., Tapon, N., Stowers, L., Burbelo, P. D., Aspenstrom, P., Bridge, T., Chant, J., and Hall, A. (1996). Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65pAK and the JNK/SAPK MAP kinase cascade. Cell, 87, 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Liang, J. O., Sung, T.-C., Morris, A. J., Frohman, M.A., and Kornfeld, S. (1997). Different domains of mammalian ADP-ribosylation factor 1 mediate interaction with selected target proteins. J. Biol. Chem., 272, 33001–33008.

    CAS  PubMed  Google Scholar 

  • Lopez, I., Arnold, R. S., and Lambeth, J. D. (1998). Cloning and initial characterization of a human phospholipase D (hPLD2). J. Biol. Chem., 273, 12846–12852.

    CAS  PubMed  Google Scholar 

  • Martin, A., Brown, F. D., Hodgkin, M. N., Bradwell, A. J., Cook, S. J., and Hart, M. (1996). Activation of phospholipase D and phosphatidylinositol 4-phosphate 5-kinase in HL60 membranes is mediated by endogenous Arf but not Rho. J. Biol. Chem., 271, 17397–17403.

    CAS  PubMed  Google Scholar 

  • Martin, T. F. J. (1998). Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol., 14, 231–264.

    Article  CAS  PubMed  Google Scholar 

  • Martin, T. F. J. (2001). PI(4,5)P2 regulation of surface membrane traffic. Curr. Opin. Cell Biol., 13, 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Massenburg, D., Han, J.-S., Liyanage, M., Patton, W. A., Rhee, S. G., Moss, J., and Vaughan, M. (1994). Activation of rat brain phospholipase D by ADP-ribosylation factors 1, 5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc. Natl. Acad. Sci., USA, 91, 11718–11722.

    CAS  PubMed  Google Scholar 

  • Meacci, E., Vasta, V., Moorman, J. P., Bobak, D. A., Bruni, P., Moss, J., and Vaughan, M. (1999). Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. J. Biol. Chem., 274, 18605–18612.

    Article  CAS  PubMed  Google Scholar 

  • Min, D. S., Park, S.-K, and Exton, J. H. (1998). Characterization of a rat brain phospholipase D isozyme. J. Biol. Chem., 273, 7044–7051.

    CAS  PubMed  Google Scholar 

  • Mitchell, R., McCulloch, D., Lutz, E., Johnson, M., MacKenzie, C., Fennell, M., Fink, G., Zhou, W., and Sealfon, S. C. (1998). Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature, 392, 411–414.

    CAS  PubMed  Google Scholar 

  • Moritz, A., DeGraan, P. N. E., Gispen, W. H., and Wirz, K. W. A. (1992). Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J. Biol. Chem., 267, 7207–7210.

    CAS  PubMed  Google Scholar 

  • Moss, J., and Vaughan, M. (1998). Molecules in the Arf orbit. J. Biol. Chem., 273, 21431–21434.

    Article  CAS  PubMed  Google Scholar 

  • Paris, S., Beraud-Dufour, S., Robineau, S., Bigay, J., Antonny, B., Chabre, M., and Chardin, P. (1997). Role of protein-phospholipid interactions in the activation of Arf1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem., 272, 22221–22226.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-K., Min, D. S., and Exton, J. H. (1998). Definition of the protein kinase C interaction site of phospholipase D. Biochem. Biophys. Res. Comm., 244, 364–367.

    CAS  PubMed  Google Scholar 

  • Park, S.-K., Provost, J. J., Bae, C. D., Ho, W.-T., and Exton, J. H. (1997). Cloning and characterization of phospholipase D from rat brain. J. Biol. Chem., 272, 29263–29271.

    CAS  PubMed  Google Scholar 

  • Peters, P. J., Ning, K., Palacios, F., Boshans, R. L., Kazanstev, A., Thompson, L. M., Woodman, B., Bates, G. P., and D’Souza-Schorey, C. (2002). Arfaptin 2 regulates the aggregation of mutant huntingtin protein. Nature Cell Biol., 4, 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Provost, J. J., Fudge, J., Israelit, S., Siddiqi, A. R., and Exton, J. H. (1996). Tissue-specific distribution and subcellular distribution of phospholipase D in rat: evidence for distinct RhoA-and ADP-ribosylation factor (Arf)-regulated isoenzymes. Biochem. J., 319, 285–291.

    CAS  PubMed  Google Scholar 

  • Radhakrishna, H., and Donaldson, J. G. (1997). ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol., 139, 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Randazzo, P. A. (1997). Functional interaction of ADP-ribosylation factor 1 with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem., 272, 7688–7692.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A., and Kahn, R. A. (1994). GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids. J. Biol. Chem., 269, 10758–10763.

    CAS  PubMed  Google Scholar 

  • Ren, X.-D., Bokoch, G. M., Traynor-Kaplan, A., Jenins, G. H., Anderson, R. A., and Schwartz, M. A. (1996). Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Mol. Biol. Cell, 7, 435–442.

    CAS  PubMed  Google Scholar 

  • RĂĽmenapp, U., Geiszt, M., Wahn, F., Schmidt, M., and Jakobs, K. H. (1995). Evidence for ADP-ribosylation-factor-mediated activation of phospholipase D by m3 muscarinic acetylcholine receptor. Eur. J. Biochem., 234, 240–244.

    PubMed  Google Scholar 

  • RĂĽmenapp, U., Schmidt, M., Wahn, F., Tapp, E., Grannass, A., and Jakobs, K. H. (1997). Characteristics of protein-kinase-C-and ADP-ribosylation-factor-stimulated phospholipase D activities in human embryonic kidney cells. Eur. J. Biochem., 248, 407–414.

    PubMed  Google Scholar 

  • Sciorra, V. A., Rudge, S. A., Prestwich, G. D., Frohman, M. A., Engebrecht, J. A., and Morris, A. J. (1999). Identification of a phosphoinositide-binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J., 20, 5911–5921.

    Google Scholar 

  • Shin, O.-H., Couvillon, A. D., and Exton, J. H. (2001). Arfophilin is a common target of both Class II and Class III ADP-ribosylation factors. Biochem., 36, 10846–10852.

    Google Scholar 

  • Shin, O.-H., and Exton, J. H. (2001). Differential binding of Arfaptin 2/POR1 to ADP-ribosylation factors and Rac1. Biochem. Biophys. Res. Comm., 285, 1267–1273.

    CAS  PubMed  Google Scholar 

  • Shin, O.-H., Ross, A. H., Mihai, I., and Exton, J. H. (1999). Identification of arfophilin, a target protein for GTP-bound Class II and ADP-ribosylation factors. J. Biol. Chem., 274, 36609–36615.

    CAS  PubMed  Google Scholar 

  • Shome, K., Nie, Y., and Romero, G. (1998) ADP-ribosylation factor proteins mediate agonist-induced activation of phospholipase D. J. Biol. Chem., 273, 30836–30841.

    Article  CAS  PubMed  Google Scholar 

  • Shome, K., Rizzo, M. A., Vasudevan, C., Andresen, B., and Romero, G. (2000). The activation of phospholipase D by endothelin-1, angiotensin II, and platelet-derived growth factor in vascular smooth muscle A10 cells is mediated by small G proteins of the ADP-ribosylation factor family. Endocrinol., 141, 2200–2208.

    Article  CAS  Google Scholar 

  • Siddhanta, A., Backer, J. M., and Shields, D. (2000). Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J. Biol. Chem, 275, 12023–12031.

    Article  CAS  PubMed  Google Scholar 

  • Simonsen, A., Wurmster, A. E., Emr, S. D., and Stenmark, H. (2001). The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol., 13, 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Singer, W. D., Brown, H. A., Jiang, X., and Sternweis, P. C. (1996). Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J. Biol. Chem., 271, 4504–4510.

    Article  CAS  PubMed  Google Scholar 

  • Skippen, A., Jones, D. H., Morgan, C. P., Li, M., and Cockcroft, S. (2002). Mechanism of ADP ribosylation factor-stimulated phosphatidylinositol 4,5-bisphosphate synthesis in HL60 cells. J. Biol. Chem., 277, 5823–5831.

    Article  CAS  PubMed  Google Scholar 

  • Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J., and Olsen, E. N. (1995). PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J. Cell Biol., 128, 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Sung, T.-C., Altshuller, Y. M., Morris, A. J., and Frohman M. A. (1999a). Molecular analysis of mammalian phospholipase D2. J. Biol. Chem., 274, 494–502.

    CAS  PubMed  Google Scholar 

  • Sung, T.-C., Zhang, Y., Morris, A. J., and Frohman, M. A. (1999b). Structural analysis of human phospholipase D1. J. Biol. Chem., 274, 3659–3666.

    CAS  PubMed  Google Scholar 

  • Takeya, R., Takeshige, K., and Sumimoto, H. (2000). Interaction of the PDZ domain of human PICK1 with class 1 ADP-ribosylation factors. Biochem. Biophys. Res. Comm., 267, 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Tarricone, C., Xiao, B., Justin, N., Walker, P. A., Rittinger, K., Gamblin, S. J., and Smnerdon, S. J. (2001). The structural basis of Arfaptin-mediated cross talk between Rac and Arf signaling pathways. Nature, 411, 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Terui, T., Kahn, R. A., and Randazzo, P. A. (1994) Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor 1. Evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem., 269, 28130–28135.

    CAS  PubMed  Google Scholar 

  • Tsai, S.-C., Adamik, R., Hong, J.-X., Moss, J., Vaughan, M., Kanoh, H., and Exton, J. H. (1998). Effects of Arfaptin 1 on guanine nucleotide-dependent activation of phospholipase D and cholera toxin by ADP-ribosylation factor. J. Biol. Chem., 273, 20697–20701.

    CAS  PubMed  Google Scholar 

  • Van Aelst, L., Joneson, T., and Bar-Sagi, D. (1996). Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J., 15, 3778–3786.

    PubMed  Google Scholar 

  • Vitale, N., Caumont, A-S, Chasserot-Golaz, S., Du, G., Wu, S., Sciorra, V. A., Morris, A. J., Frohman, M. A., and Bader, M-F. (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J., 20, 2424–2434.

    Article  CAS  PubMed  Google Scholar 

  • Way, G., O’Luanaigh, N., and Cockcroft, S. (2000). Activation of ecovytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phopholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis. Biochem. J., 345, 63–70.

    Google Scholar 

  • West, M. A., Bright, N. A., and Robinson, M. S. (1997). The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. J. Cell Biol., 138, 1239–1254

    Article  CAS  PubMed  Google Scholar 

  • Whatmore, J., Morgan, C. P., Cunningham, E., Collison, K. S., Willison, K. R., and Cockcroft, S. (1996) ADP-ribosylation factor 1-regulated phospholipase D activity is localized at the plasma membrane and intracellular organelles in HL60 cell. Biochem. J., 320, 785–794.

    CAS  PubMed  Google Scholar 

  • Williger, B.-T., Osterman, J., and Exton, J. H. (1999). Arfaptin 1, an Arf-binding protein, inhibits phospholipase D and endoplasmic reticulum/Golgi protein transport. FEBS Lett., 443, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Williger, B.-T., Provost, J. J., Ho, W.-T., Milstine, J., and Exton, J. H. (1999). Arfaptin 1 forms a complex with ADP-ribosylation factor and inhibits phospholipase D. FEBS Lett., 454, 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. Z., Heimberg, H., D’Souza-Schorey, C., Mueckler, M. M., and Stahl, P. D. (1998). Subcellular distribution and differential expression of endogenous ADP-ribosylation factor 6 in mammalian cells. J. Biol. Chem., 273, 4006–4011.

    CAS  PubMed  Google Scholar 

  • Zhang, G.-F., Patton, W. A., Lee, F.-J. L., Liyanage, M., Han, J.-S., Rhee, S.G., Moss, J., and Vaughan, M. (1995). Different Arf domains are required for the activation of cholera toxin and phospholipase D. J. Biol. Chem., 270, 21–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Exton, J.H. (2004). Phospholipase D, Arfaptins and Arfophilin. In: ARF Family GTPases. Proteins and Cell Regulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2593-9_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2593-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1719-3

  • Online ISBN: 978-1-4020-2593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics