Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 48))

Summary

Infiltration is a major hydrologic process controlling the amount of runoff at scales from hillslopes to river basins. Measurements of infiltration and the soil characteristics are usually done at point locations. Estimating infiltration from soil maps may be the only feasible alternative to making extensive measurements. In order to gain some idea of the spatial distribution of soil characteristics and infiltration over large areas, we must resort to remote sensing, geologic maps, or soil maps to estimate infiltration. Applying the Green-Ampt equations requires soil properties, as well as regression equations that relate the Green-Ampt parameters to the soil properties. Because the mapped soil properties are not well known and some variation is expected within the mapping unit, uncertainty in the parameter value results. The amount of spatial detail in a soil map relative to a river basin has important consequences for the simulated hydrologic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspinall, R. J. and Pearson, D. M., 1993, “Data Quality and Spatial Analysis: Analytical Use of GIS for Ecological Modeling.” Proceedings of the Second International Conference on Integrated Geographic Information Systems and Environmental Modeling, September 26–30, 1993, Breckenridge, Colorado.

    Google Scholar 

  • Brooks, R. H. and Corey, A. T., 1964, “Hydraulic properties of porous media.” Hydrology Paper No. 3, Colorado State University, Fort Collins, Colorado.

    Google Scholar 

  • Burrough, P. A., 1986, “Principles of geographic information systems for land resources assessment.” Monographs on Soil and Resources Survey, No.12 Oxford Science Publications, pp.103–135.

    Google Scholar 

  • Buttenfield, B., 1993, “Representing data quality.” Cartographica, 30(2 & 3):1–7.

    Google Scholar 

  • Chow, V. T., Maidment, D. R., and Mays, L. W., 1988, Applied Hydrology. McGraw-Hill, New York.

    Google Scholar 

  • Chu, S. T., 1978, “Infiltration during an unsteady rain.” Water Resour. Res. 14(3), pp.461–466.

    Google Scholar 

  • Corradini, C., Melone, F., and Smith, R. E., 1994, “Modeling infiltration during complex rainfall sequences.” Water Resour. Res., 30(10):2777–2784.

    Article  Google Scholar 

  • Davis, J. C., 1973, Statistics and Data analysis in Geology. John Wiley and Sons, New York. 71p.

    Google Scholar 

  • Fisher, P., 1993, “Visualizing uncertainty in soil maps by animation.” Cartographica 30(2 & 3):20–27.

    Google Scholar 

  • Green, W. H. and Ampt, G. A., 1911, “Studies in soil physics I: The flow of air and water through soils.” J. of Agric. Sci., 4:1–24.

    Google Scholar 

  • Gupta, R. K., Rudra, R. P., Dickinson, W. T., and Elrick, D. E., 1994, “Modeling spatial patterns of three infiltration parameters.” Canadian Agricultural Engineering, 36(1):9–13.

    Google Scholar 

  • Heuvelink, G. B. M, Burrough, P. A., and Leenaers., 1990, Error Propagation in Spatial Modeling with GIS. Edited by. Harts et al. pp.453–462.

    Google Scholar 

  • Jetten, V. G., Riezebos, H. TH., Hoefsloot, F., and Van Rossum, J., 1993, “Spatial variability of infiltration and related properties of tropical soils.” Earth Surface Processes and Landforms, 18:477–488.

    Google Scholar 

  • Lunetta, R. S., Congalton, R. G., Jensen, J. R., McGwire, K. C., and Tinney, L. R., 1991, “Remote Sensing and Geographic Information System Data Integration: Error Sources and Research Issues.” Photogramm. Eng. and Rem. S., 57(6):677–687.

    Google Scholar 

  • Mein, R. G. and Larson, C. L., 1973, “Modeling infiltration during steady rains.” Water Resour. Res., 9(2):384–394.

    Google Scholar 

  • Nearing, M. A., Deer-Aschough, L., and Laflen, J. M., 1990, “Sensitivity analysis of the WEPP hill slope profile erosion model.” Trans. of the ASAE, 33(3):839–849.

    Google Scholar 

  • Parlange, J. Y., Hogarth, W. L., Boulier, J. F., Touma, J, Haverkamp, R., and Vauchad, G., 1985, “Flux and water content relation at the soil surface.” Soil Science Society of America Journal, 49(2):285–288.

    Article  Google Scholar 

  • Philip, J. R., 1957, “The theory of infiltration 4. Sorptivity and algebraic infiltration equations.” Soil Science, 84:257–264.

    Google Scholar 

  • Rawls, W. J. and Brakensiek, D. L., 1986, “Comparison between Green-Ampt and Curve number runoff predictions.” Trans. of the ASAE, 29(6):1597–1599.

    Google Scholar 

  • Rawls, W. J., Brakensiek, D. L., and Miller, N., 1983a, “Predicting Green and Ampt infiltration parameters from soils data.” ASCE, J. of Hydraul. Engr., 109(1):62–70.

    Google Scholar 

  • Rawls, W. J., Brakensiek, D. L., and Soni, B., 1983b, “Agricultural management effects on soil water processes, Part I: Soil water retention and Green and Ampt infiltration parameters.” Trans. of the American Society of Agricultural Engineers, 26(6):1747–1752.

    Google Scholar 

  • Richards, L. A., 1931, “Capillary conduction of liquids through porous mediums.” Physics, I:318–333.

    Google Scholar 

  • Risse, L. M., Liu, B.Y., and Nearing, M.A., 1995a, “Using curve numbers to determine baseline values of Green-Ampt effective hydraulic conductivities.” Water Resources Bulletin, 31(1):147–158.

    Google Scholar 

  • Risse, L. M., Nearing, M. A., and Zhang, X. C., 1995b, “Variability in Green-Ampt effective hydraulic conductivity under fallow conditions.” J. of Hydrol., 169:1–24.

    Google Scholar 

  • Salvucci, G. D. and Entekhabi, D., 1994, “Explicit expressions for Green-Ampt(delta function diffusivity) infiltration rate and cumulative storage.” Water Resour. Res., 30(9):2661–2663.

    Article  Google Scholar 

  • Sisson, J. B. and Wieranga, P. J., 1981, “Spatial variability in Green-Ampt effective hydraulic conductivity under fallow conditions.” Soil Science Society of America Journal, 46:20–26.

    Google Scholar 

  • Smith, R. E., Corradini, C., and Melone, F., 1993, Modeling infiltration for multistorm runoff events. Water Resour. Res., 29(1):133–143.

    Article  Google Scholar 

  • Van Mullem, J. A., 1989, Applications of the Green-Ampt infiltration model to watersheds in Montana and Wyoming. M.S. Thesis. Montana State University at Bozeman, Montana.

    Google Scholar 

  • Van Mullem, J. A., 1991, “Runoff and Peak Discharges Using Green-Ampt Infiltration Model.” ASCE, J. of Hydraulic Engineering, 117(3):354–370.

    Google Scholar 

  • Veregin, H., 1994, “Integration of Simulation Modeling and Error Propagation for the Buffer Operation in GIS.” Photogramm Eng Rem S, 60(4):427–835.

    Google Scholar 

  • Vieux, B.E., N.S. Farajalla and N. Gauer, 1996, “Integrated GIS and Distributed storm Water Runoff Modeling”. In: GIS and Environmental Modeling: Progress and Research Issues. Edited by. Goodchild, M. F., Parks, B. O., and Steyaert, L. GIS World, Inc., Colorado: 199–204.

    Google Scholar 

  • Webster, R. and Oliver, M A., 1990, “Statistical methods in soil and land resource survey.” In: Spatial Information systems. Oxford University Press, Oxford. 316p.

    Google Scholar 

  • Wesseling, C. G. and Heuvelink, G. B. M., 1993, ADAM User’s Manual. Department of Physical Geography, University of Utrecht.

    Google Scholar 

  • Williams, J. and Bonell, M., 1988, “The influence of scale of Measurement of the Spatial and Temporal Variability of the Philip Infiltration Parameters-An Experimental Study in an Australian Savannah Woodland.” J. of Hydrol., 104:33–51.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Infiltration Modeling. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2460-6_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2460-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2459-7

  • Online ISBN: 978-1-4020-2460-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics