Skip to main content

Abstract

Landslides are a major natural hazard in many areas of the world, and globally they cause hundreds of billions of dollars of damage, and hundreds of thousands of deaths and injuries each year. Landslides are the second most common natural hazard in Turkey, and the Black Sea region of that country is particularly affected. Therefore, landslide susceptibility mapping is one of the important issues for urban and rural planning in Turkey. The reliability of these maps depends mostly on the amount and quality of available data used, as well as the selection of a robust methodology. Although statistical methods generally have been implemented and used for evaluating landslide susceptibility and risk in medium scale studies, they are distribution-based and cannot handle multi-source data that are commonly collected from nature. These drawbacks are responsible for the on-going investigations into slope instability. To overcome these weaknesses, the desired technique must be able to handle multi-type data and its superiority should increase as the dimensionality and/or non-linearity of the problem increases - which is when traditional regression often fails to produce accurate approximations. Although neural networks have some problems with the creation of architectures, processing time, and the negative “black box” syndrome, they still have an advantage over traditional methods in that they can deal with the problem comprehensively and are insensitive to uncertain data and measurement errors. Therefore, it is expected that the application of neural networks will bring new perspectives to the assessment of landslide susceptibility in Turkey. In this paper, the application of neural networks for landslide susceptibility mapping will be examined and their performance as a component of spatial decision support systems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleotti, P., P. Baldelli, G. Polloni and F. Puma, 1998, “Keynote paper: Different approaches to landslide hazard assessment”, Proceedings of the Second Conf Environ Management (ICEM-2), Wollongong (Australia), 1, p. 3–10.

    Google Scholar 

  • Basheer, I. A. and M. Hajmeer, 2000, “Artificial neural networks: fundamentals, computing, design, and application”, Journal of Microbiological Methods, Vol. 43, p. 3–31.

    Article  Google Scholar 

  • Benediktsson, J. A., P. H. Swain and O. K. Ersoy, 1990, “Neural network approaches versus statistical methods in classification of multisource remote sensing data”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, p. 540–552.

    Article  Google Scholar 

  • Carrara, A. and L. Meranda, 1976, “Landslide inventory in Northern Calabria, Southern Italy”, Bulletin of Geological Society Am., Vol. 87(8), p. 1153–1162.

    Google Scholar 

  • Duman, T.Y., Ö. Emre, T. Çan, S. Ates, M. Keçer, T. Erkal, S. Durmaz, A. Dogan, E. Çörekçioglu, A. Göktepe, E. Cicioglu and F. Karakay, 2001, “Turkish landslide inventory mapping project: Methodology and results on Zonguldak quadrangle (1/500 000)”, Fourth International Turkish Geology Symposium.

    Google Scholar 

  • Einstein, H. H., 1988, “Special lecture: landslide risk assessment procedure”, Proceedings of 5th International Symposium on Landslides, Lausanne, 2, p. 1075–1090.

    Google Scholar 

  • Emre, Ö., S. Ates, M. Keçer, T. Erkal, T. Yilmaz and S. Durmaz, 1999, “Pazarcik-KDZ Eregli dogalgaz ana iletim hatti Pasaköy (Adapazari)-KDZ Eregli arasinin heyelan etüdü”, MTA Report No. 10187 (in Turkish).

    Google Scholar 

  • Gomez, H. R., 2002, “Modeling landslide potential in the Venezuelan Andes”, PhD Thesis, The University of Nottingham, School of Geography, 272 p. (unpublished)

    Google Scholar 

  • Guzzetti, F., M. Cardinalli, P. Reichenbach and A. Carrara, 2000, “Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin”, Environmental Management, Vol. 25, No. 3, p. 247–263.

    Article  Google Scholar 

  • Guzzetti, F., A. Carrara, M. Cardinalli, and P. Reichenbach, 1999, “Landslide hazard evaluation: A review of current techniques and their application in a multi-case study, central Italy”, Geomorphology, Vol. 31, p 181–216.

    Article  Google Scholar 

  • Hansen, A., 1984, “Landslide hazard analysis”, In: Brunsden, D. and Prior, D. B. (Eds), Slope instability, John Wiley and Sons, New York, p. 523–602.

    Google Scholar 

  • Hecth-Nielsen, R., 1990, Neurocomputing, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Jain, A. K., J. Mao and K. M. Mohiuddin, 1996, Artificial neural networks: a tutorial, Comput. IEEE March, p. 31–44.

    Google Scholar 

  • Lee, S., J. H. Ryu and M. J. Lee, 2003, “Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea”, Environmental Geology, Vol. 44, p. 820–833.

    Google Scholar 

  • Mayoraz, F. and L. Vulliet, 2002, “Neural networks for Slope Movement Prediction”, The International Journal of Geomechanics, Vol. 2, Num. 2, p. 153–173.

    Google Scholar 

  • Pontius, Jr. R.G. and L. C. Schneider, 2001, “Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA”, Agriculture, Ecosystems and Environment, Vol. 85, p. 239–248.

    Google Scholar 

  • Schalkoff, R. J., 1997, Artificial Neural Networks, McGraw-Hill, New York.

    Google Scholar 

  • Soeters, R. and C. J. Van Westen, 1996, “Slope instability recognition, analysis, and zonation”, in: Turner, A.K. and Shuster, R. L. (Eds), Landslides Investigation and mitigation, Transp. Res. Board, Special Report 247, Natural Acad. Press, Washington D.C., p. 129–177.

    Google Scholar 

  • Sui, D. Z., 1993, “Integrating neural network with GIS for spatial decision making”, The Operational Geographer, Vol. 11, No. 2, p. 13–20.

    Google Scholar 

  • Suzen, M.L. and V. Doyuran, 2004, “Data Driven Bivariate Landslide Susceptibility Assessment Using Geographical Information Systems: A Method and Application to Asarsuyu Catchment, Turkey”, Engineering Geology, Vol 71/3–4, p. 303–321.

    Google Scholar 

  • Swets, J.A., 1988, “Measuring the Accuracy of Diagnostic Systems”, Science, Vol. 240, p. 1285–1293.

    Google Scholar 

  • Tchaban, T., J. P. Griffin, and M. J. Taylor, 1997, The Application of Intelligent Decision Support Systems in Profiling of Retail Outlets. CiteSeer (Scientific Literature Digital Library), http://citeseer.ist.psu.edu/93150.html, 6 pages.

  • Varnes, D.J. IAEG commission on landslides, 1984, Landslide hazard zonation: a review of principles and practice. UNESCO, Paris, No: 3, 63 pages.

    Google Scholar 

  • Varnes, D. J., 1974, “The logic of geological maps, with reference to their interpretation and use for engineering purposes”, U.S. Geological Survey Professional Paper 837, 48 pages.

    Google Scholar 

  • Wang, F. J., 1992, “Incorporating a neural network into GIS for agricultural land suitability analysis”, Proceedings of the GIS/LIS’92 conference, (1), p. 804–815.

    Google Scholar 

  • Wei, Y., W. Xu, Y. Fan and H. T. Tasi, 2002, “Artificial neural network based predictive method for flood disaster”, Computers & Industrial Engineering, Vol. 42, Issues 2–4, p. 383–390.

    Google Scholar 

  • Werbos, P. J., 1995, “Backpropagation: Basics and new developments”, in M.A. Arbib, editor, Handbook of Brain Theory and Neural Networks, p. 134–139, MIT Press.

    Google Scholar 

  • Wieczorek, G. F., 1984, “Preparing a detailed landslide-inventory map for hazard evaluation and reduction”, Bulletin of the Association of Engineering Geologists, Vol. 21, No. 3, p. 337–342.

    Google Scholar 

  • Zhou, W., 1999. “Verification of the Nonparametric Characteristics of Backpropagation Neural Networks for Image Classifications”, IEEE Transactions on Geoscience and Remote Sensing. Vol. 37(2), p. 771–779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Yesilnacar, E., Hunter, G.J. (2004). Application of Neural Networks for Landslide Susceptibility Mapping in Turkey. In: Van Leeuwen, J.P., Timmermans, H.J.P. (eds) Recent Advances in Design and Decision Support Systems in Architecture and Urban Planning. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2409-6_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2409-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2408-5

  • Online ISBN: 978-1-4020-2409-2

  • eBook Packages: Architecture and DesignEngineering (R0)

Publish with us

Policies and ethics