Skip to main content

Optimization of Numerical Inversion in Photopolarimetric Remote Sensing

  • Conference paper
Photopolarimetry in Remote Sensing

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 161))

Abstract

Remote sensing is one primary tool for studying the interactions of solar radiation with the atmosphere and surface and their influence on the Earth radiation balance. During the past three decades the radiation measured from satellite, aircraft and ground have been employed successfully for characterizing radiative properties of land, ocean, atmospheric gases, aerosols, clouds, etc. One of the challenges in implementing remote sensing is the development of a reliable inversion procedure required for deriving information about the atmospheric or surface component interaction with the measured radiation. The inversion is particularly crucial and demanding for interpreting high complexity measurements where many unknowns should be derived simultaneously. Therefore the deployment of remote-sensing sensors of the next generation with diverse observational capabilities inevitably would be coupled with significant investments into inverse-algorithm development. Numerous publications offer a wide diversity of inversion methodologies suggesting somewhat different inversion methods. Such uncertainty in methodological guidance leads to excessive dependence of inversion algorithms on the personalized input and preferences of the developer. This study is an attempt to outline unified principles addressing such important aspects of inversion optimization as accounting for errors in the data used, inverting multi-source data with different levels of accuracy, accounting for a priori and ancillary information, estimating retrieval errors, clarifying potential of employing different mathematical inverse operations (e.g. comparing iterative versus matrix inversion), accelerating iterative convergence, etc. The described concept uses the principles of statistical estimation and suggests a generalized multi-term least-square-type formulation that complementarily unites advantages of a variety of practical inversion approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman filters, Gauss-Newton and Levenberg-Marquardt iterations, etc. The proposed methodology has resulted from the multi-year efforts of developing inversion algorithms for retrieving comprehensive aerosol properties from ground-based remote sensing observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Twomey, “Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements”, (Elsevier, Amsterdam, 1977).

    Google Scholar 

  2. A.N. Tikhonov and V.Y. Arsenin, “Solution of Ill-Posed Problems” (Wiley, New York, 1977).

    Google Scholar 

  3. A. Tarantola, “Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation”, (Elsevier, Amsterdam, 1987).

    Google Scholar 

  4. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, “Numerical Recipes in FORTRAN. The art of Scientific Computing”, (Cambridge University Press, 1992).

    Google Scholar 

  5. A. Bakushinsky and A. Goncharsky, “Ill-Posed Problems: Theory and Applications” (Kluwer, Dordrecht, 1994).

    Google Scholar 

  6. C.D. Rodgers, “Inverse methods for atmospheric sounding: theory and practice”, (World Scientific, Singapore, 2000).

    Google Scholar 

  7. O.V. Dubovik, T.V. Lapyonok, and S.L. Oshchepkov, Appl. Opt., 34, 8422 (1995).

    Google Scholar 

  8. O. Dubovik, A. Smirnov, B. N. Holben, et al., J. Geophys. Res., 105, 9791 (2000).

    Google Scholar 

  9. O. Dubovik and M. D. King, J. Geophys. Res., 105, 20673 (2000).

    Google Scholar 

  10. R.E. Kalman, J. Basic. Engrg., 35, 82 (1960).

    Google Scholar 

  11. B.L. Phillips, J. Assoc. Comp. Mach, 9, 84 (1962).

    Google Scholar 

  12. A.N. Tikhonov, Dokl. Akad. Nauk SSSR, 151, 501 (1963).

    Google Scholar 

  13. S. Twomey, J. Assoc. Comp. Mach., 10, 97 (1963).

    Google Scholar 

  14. S. Twomey, J. Comp. Phys, 18, 188 (1975).

    Google Scholar 

  15. Strand, O. N., and E. R. Westwater, J. Assoc. Comput. Mach., 15, 100 (1968).

    Google Scholar 

  16. Strand, O. N., and E. R. Westwater, SIAM J. Numer. Anal., 5, 287 (1968).

    Article  Google Scholar 

  17. M.T. Chahine, J. Opt. Soc. Am., 12, 1634 (1968).

    Google Scholar 

  18. V.F. Turchin and V.Z. Nozik, Izv. Acad. Nauk SSSR Fiz. Atmos. Okeana, 5, 29 (1969).

    Google Scholar 

  19. C.D. Rodgers, Rev. Geophys. Space Phys., 14, 609 (1976).

    Google Scholar 

  20. B.N. Holben, T.F. Eck, I. Slutsker et al., Remote Sens. Envir., 66, 1 (1998).

    Google Scholar 

  21. M.D. King, M.G. Strange, P. Leone, et al., J. Atmos. Oceanic Technol., 3, 513 (1986).

    Google Scholar 

  22. D.J. Diner, J.C. Beckert, T.H. Reilly, et al., IEEE Trans. Geosci. Remote Sens., 36, 1072 (1998).

    Google Scholar 

  23. Y. Sasano, M. Suzuki, T. Yokota, et al., Geophys. Res. Lett., 26, 197 (1999).

    Google Scholar 

  24. P. Goloub, D. Tanre, J.L. Deuze, et al., IEEE Trans. Geosci. Remote Sens., 37, 1586 (1999).

    Google Scholar 

  25. J. Chowdhary, B. Cairns, M. Mishchenko, et al., Geophys. Res. Lett., 28, 243 (2001).

    Google Scholar 

  26. J. Chowdhary, B. Cairns, L.D. Travis, J. Atmos. Sci., 59, 383 (2002).

    Article  Google Scholar 

  27. W.T. Edie, D. Dryard, F.E. James, M. Roos, B. Sadoulet, “Statistical Methods in Experimental Physics”, (North-Holland Publishing Company, Amsterdam, 1971)

    Google Scholar 

  28. C. R. Rao, “Linear Statistical Inference and Its Applications” (Wiley, New York, 1965).

    Google Scholar 

  29. G. A. Serber, “Linear Regression Analysis”, (Wiley, New York, 1977).

    Google Scholar 

  30. A. Alpert, “Regression and the Moore-Penrose Pseudoiniverse” (Academic Press, New York, 1972).

    Google Scholar 

  31. A. N. Tikhonov, A. S. Leonov and A. G. Yagola, “Nonlinear Ill-Posed Problems”, (Chapman & Hall, London 1998).

    Google Scholar 

  32. V.F. Turchin, V.P. Kozlov and M.S. Malkevich, Sov. Phys. Usp. Fiz.-USSR, 13, 681 (1971).

    Google Scholar 

  33. A. Gelb, “Applied Optimal Estimation”, (MIT Press, Cambridge, Mass., 1988).

    Google Scholar 

  34. D. Hartely and R. Prinn, J. Geophys. Res., 98, 5183 (1993).

    Google Scholar 

  35. M.D. King, D. M. Byrne, B. M. Herman et al., J. Atmos. Sci., 21, 2153 (1978).

    Google Scholar 

  36. M.D. King, J. Atmos. Sci., 39, 1356 (1982).

    Article  Google Scholar 

  37. T. Nakajima, G. Tonna, R. Rao, et al., Appl. Opt., 35, 2672 (1996).

    Google Scholar 

  38. D. Muller, U. Wandinger, A. Ansmann, Appl. Opt., 38, 2346 (1999).

    Google Scholar 

  39. O.P. Hasekamp and J. Landgraf, J. Geophys. Res., 106, 8077 (2001).

    Article  Google Scholar 

  40. I. Veselovskii, A. Kolgotin, V. Griaznov et al., Appl. Opt., 41, 3685 (2002).

    Google Scholar 

  41. P.S. Hansen, Inverse Problems, 8, 849 (1992)

    Article  Google Scholar 

  42. V.F. Turchin and L.S. Turovtse, Optika I Spectroskopiya, 36, 280 (1974)

    Google Scholar 

  43. A.M. Obuhov, Izv. Acad, Sci. SSSR Geophys., 432 (1960)

    Google Scholar 

  44. G., Forsythe, and W. Wasow, “Finite Difference Methods for Partial Differential Equations”, (Wiley, New York, 1960).

    Google Scholar 

  45. J.M. Ortega, “Introduction to Parallel and Vector Solution of Linear System”, (Plenum Press, New York, 1988).

    Google Scholar 

  46. V. Krasnopolsky, L.C. Breaker, and W.H. Gemmill, J. Geophys. Res, 100, 11,033 (1995).

    Google Scholar 

  47. D.E. Goldberg, “Genetic algorithms in search, optimization, and machine learning”, (Addison-Wesley Pub., 1989)

    Google Scholar 

  48. B.R. Lienert, J.N. Porter, S.K. Sharma J. Atmos. Ocean. Tech., 20, 1403, (2003).

    Google Scholar 

  49. J.M. Ortega and W.C. Reinboldt, Iterative Solution of Nonlinear Equations in Several Variables, (Academic Press, New York, 1970).

    Google Scholar 

  50. S.L. Oshchepkov and O.V. Dubovik, J. Phys. D Appl. Phys., 26, 728 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Dubovik, O. (2004). Optimization of Numerical Inversion in Photopolarimetric Remote Sensing. In: Videen, G., Yatskiv, Y., Mishchenko, M. (eds) Photopolarimetry in Remote Sensing. NATO Science Series II: Mathematics, Physics and Chemistry, vol 161. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2368-5_3

Download citation

Publish with us

Policies and ethics