Skip to main content

Measurements of General Magnetic Fields on Stars with Vigorous Convective Zones Using High-Accuracy Spectropolarimetry

  • Conference paper
Photopolarimetry in Remote Sensing

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 161))

  • 1468 Accesses

Abstract

Magnetic fields are studied to understand the nature of activity on stars with convective envelopes. Results of high-accuracy General Magnetic Field (GMF) measurements of different luminosity stars on the right hand side of the Cepheid instability strip of the H-R diagram are reviewed: the presence of a weak general magnetic field for 21 stars with vigorous convection is detected (F9-M3 spectral types and I-V luminosity classes). A substantial (up to some dozens) GMF value was detected on two supergiant stars, three bright giants, twelve giant stars, one subgiant, and three solar-like dwarfs. Furthermore, the variation of global nonaxisymmetric magnetic fields as a function of the stellar rotation is determined for two solar-like stars other than the Sun: the magnetic field of the young solar-like star ξ Boo A shows periodic variations from -10 G to +30 G, and the magnetic field of the old solar-like star 61 Cyg A varies from -10 G up to +4 G. Currently, the nature of this field is unknown. The nonaxisymmetric GMF as a phenomenon is absent in the Babcock’ and Leighton’ phenomenological magneto-kinematic model of the solar cycle. In terms of standard α-Ω dynamo theory, GMF is absent also. There are only two main components of large-scale magnetic fields on the Sun: the toroidal magnetic field and the axisymmetric poloidal field. The coincidence of theoretical conclusions of different authors as well as results of their numerical simulations and new data on the observed magnetic field for solar-like stars (i.e., the presence of a nonaxisymmetric large-scale field) leads to a working hypothesis that GMF reflects properties of a stationary global magnetic field of the Sun’s (or convective star’s) radiative interior onto its surface. There appears to be a third nonaxisymmetric, large-scale component of the magnetic field (Origin Magnetic Field) - the initial magnetic field for dynamo mechanisms; a global magnetic field of radiative interior penetrates into surface of the Sun, and the observed GMF is a time-dependent superposition of all large-scale components: axisymmetric poloidal, nonaxisymmetric toroidal and nonaxisymmetric origin fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Babcock, ApJ, 133, 572 (1961)

    Article  Google Scholar 

  2. R. B. Leighton, ApJ, 140, 1559 (1964)

    Article  Google Scholar 

  3. R. B. Leighton, ApJ, 156, 1 (1969)

    Article  Google Scholar 

  4. A. B. Severny, Nature, 224, 53 (1969)

    Google Scholar 

  5. P. H. Scherrer, J. M. Wilkox, L. Svalgaard, T. L. Duvall, P. H. Dittmer, & E. K. Gustafson, Sol. Phys., 54, 353 (1977)

    Article  Google Scholar 

  6. V. A. Kotov, P. H. Scherrer, R. F. Howard, & V. I. Haneychuk, ApJS, 116, 103 (1998)

    Article  Google Scholar 

  7. V. I. Haneychuk, V. A. Kotov, & T. T. Tsap, A&A, 403, 1115 (2003)

    Article  Google Scholar 

  8. V. A. Kotov, Bull. Crimean Astrophys. Obs., 77, 39 (1987)

    Google Scholar 

  9. L. Svalgaard, & J. M. Wilcox, Sol. Phys., 41, 461 (1975)

    Article  Google Scholar 

  10. V. I. Haneychuk, V. A. Kotov, & T. T. Tsap, A&A, 403, 1115 (2003)

    Article  Google Scholar 

  11. S. I. Plachinda, & T. N. Tarasova, ApJ, 533, 1016 (2000)

    Article  Google Scholar 

  12. M. J. Thompson, et al., Science, 272, 1400 (1996)

    Google Scholar 

  13. A. G. Kosovichev, et al., Sol. Phys., 170, 43 (1997)

    Article  Google Scholar 

  14. J. Schou, et al., ApJ, 505, 390 (1998)

    Article  Google Scholar 

  15. D. O. Gough, & M. E. McIntyre, Nature, 394, 755 (1998)

    Article  Google Scholar 

  16. G. Rüdiger, & L. L. Kitchatinov, Astronomische Nachrichten, 318, 273 (1997)

    Google Scholar 

  17. K. B. MacGregor, & P. Charbonneau, ApJ, 519, 911 (1999)

    Article  Google Scholar 

  18. C. M. Johns-Krull, J. A. Valenti, A. P. Hatzes, & A. Kanaan, ApJ, 510, L41 (1999)

    Article  Google Scholar 

  19. C. M. Johns-Krull, J. A. Valenti, & C. Koresko, ApJ, 516, 900 (1999)

    Article  Google Scholar 

  20. G. Basri, G. W. Marcy, & J. A. Valenti, ApJ, 390, 622 (1992)

    Article  Google Scholar 

  21. E. N. Parker, Geophys. Astrophys. Fluid Dyn., 18, 175 (1981)

    Google Scholar 

  22. A. E. Dudorov, V. N. Krivodubskij, T. V. Ruzmaikina, & A. A. Ruzmaikin, SvA, 33, 420 (1989)

    Google Scholar 

  23. L. L. Kitchatinov, M. Jardine, & A. C. Cameron, A&A, 374, 250 (2001)

    Article  Google Scholar 

  24. M. I. Pudovkin, & E. E. Benevolenskaya, SvA, 28, 458 (1984)

    Google Scholar 

  25. E. H. Levy, ASP Conference Series, 26, 223, (1992)

    Google Scholar 

  26. E. H. Levy, & D. W. Boyer, ApJ, 254, L19 (1982)

    Article  Google Scholar 

  27. D. W. Boyer, & E. H. Levy, ApJ, 277, 848 (1984)

    Article  Google Scholar 

  28. E. E. Benevolenska, & M. I. Pudovkin, Sol. Phys., 95, 381 (1985)

    Google Scholar 

  29. I. Rueedi, S. K. Solanki, G. Mathys, & S. H. Saar, A&A, 318, 429 (1997)

    Google Scholar 

  30. C. M. Johns-Krull, J. A. Valenty, & C. Koresko, ApJ, 516, 900 (1999)

    Article  Google Scholar 

  31. J.-F. Donati, et al., MNRS, 345, 1145 (2003)

    Google Scholar 

  32. E. N. Parker, “Cosmical Magnetic Fields: Their Origin and Their Activity” (Oxford: Calerdon Press, 1979)

    Google Scholar 

  33. F. Krause, & K.-H. Rädler, “Mean-Field Magnetohydrodynamics and Dynamo Theory” (Berlin: Verlag, 1980)

    Google Scholar 

  34. S. I. Vainshtein, Ya. B. Zel’dovich, & A. A. Ruzmaikin, “Turbulent Dynamo in Astrophysics” (Moscow: Nauka, 1980)

    Google Scholar 

  35. S. I. Plachinda, & T. N. Tarasova, ApJ, 514, 402 (1999)

    Article  Google Scholar 

  36. O. Kochukhov, et al., A&A, 414, 613 (2004)

    Article  Google Scholar 

  37. S. I. Plachinda, A. V. Jakuschechkin, & S. G. Sergeev, Izv. Krym. Astropfiz. Obs. 87, 91 (1993)

    Google Scholar 

  38. E. F. Borra, G. Edwards, & M. Mayor, ApJ, 284, 211 (1984)

    Article  Google Scholar 

  39. S. Hubrig, S. I. Plachinda, M. Hunsch, & K.-P. Schröder, A&A, 291, 890 (1994)

    Google Scholar 

  40. T. N. Tarasova, ARep, 46, 474 (2002)

    Google Scholar 

  41. T. N. Tarasova, S. I. Plachinda, & V. V. Rumyantsev, ARep, 45, 475 (2001)

    Google Scholar 

  42. S. I. Plachinda, C. M. Johns-Krull, & T. N. Tarasova, Odessa Astron. Publ., 14, 219 (2001)

    Google Scholar 

  43. S. I. Plachinda, in press (2004)

    Google Scholar 

  44. D. N. Brown, & J. D. Landstreet, ApJ, 246, 899 (1981)

    Article  Google Scholar 

  45. S. L. Baliunas, et al., ApJ, 438, 269 (1995)

    Article  Google Scholar 

  46. G. A. Wade, J.-F. Donati, J. D. Landstreet, & S. L. S. Shorlin, MNRS, 313, 851 (2000)

    Google Scholar 

  47. V. A. Kotov, & T. V. Setyaeva, A Rep, 46, 246 (2002)

    Google Scholar 

  48. D. K. Bedford, W. J. Chaplin, A. R. Davies, J. L. Innis, G. R. Isaak, & C. C. Speake, A&A, 293, 377 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Plachinda, S.I. (2004). Measurements of General Magnetic Fields on Stars with Vigorous Convective Zones Using High-Accuracy Spectropolarimetry. In: Videen, G., Yatskiv, Y., Mishchenko, M. (eds) Photopolarimetry in Remote Sensing. NATO Science Series II: Mathematics, Physics and Chemistry, vol 161. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2368-5_15

Download citation

Publish with us

Policies and ethics