Skip to main content

Optical Properties and Biomedical Applications of Nanostructures Based on Gold and Silver Bioconjugates

  • Conference paper
Book cover Photopolarimetry in Remote Sensing

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 161))

Abstract

We discuss optical properties of single and aggregated colloidal gold and silver conjugates that can be fabricated by adsorption of a biopolymer onto nanoparticle surfaces. We start with a discussion of two-layer and multilayer optical models for colloidal gold and silver nanoparticle conjugates that consist of a metal core and a polymer shell formed by recognizing and target molecules. The point at issue is the core-size optimization of conjugate-based nanosensors as elementary transducers of molecular binding events into optical signals. We present a detailed discussion of optical properties of various aggregated conjugate-based structures such as bispheres, linear chains, plane arrays on a rectangular lattice, compact and porous clusters embedded on a cubic body-centerd lattice, and random fractal aggregates. Our attention is focused on the following topics: (1) statistical and orientation averaging of optical observables; (2) dependence of extinction and scattering spectra on the optical binary coupling of conjugates; (3) optical effects related to the chain-like structures; (4) effects of polymer coating, interparticle spacing, and cluster structure; (5) simulation of kinetic changes in the optical properties of aggregated sols formed during biospecific binding. Finally, we discuss experimental data and biomedical applications of metal nanoparticles and their biospecific conjugates in various biomedical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Th. Schalkhammer, Chemical Monthly, 129, 1067 (1998).

    Google Scholar 

  2. K. K. Jain, Expert Rev. Mol. Diagn. 3, 153 (2003).

    Article  Google Scholar 

  3. D. A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003).

    Article  Google Scholar 

  4. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos, Nanotechnology 14, R15 (2003).

    Article  Google Scholar 

  5. L. A. Lyon, M. D. Musick, and M. J. Natan, Anal. Chem. 70, 5177 (1998).

    Google Scholar 

  6. N. Stich, A. Gandhum, V. Matyushin, J. Raats, C. Mayer, Y. Alguel, and T. Schalkhammer, J. Nanosci. Nanotechnol. 2, 375 (2002).

    Article  Google Scholar 

  7. C. A. Mirkin, Inorg. Chem. 39, 2258 (2000).

    Article  Google Scholar 

  8. P. Bao, A. G. Frutos, Ch. Greef, J. Lahiri, U. Muller, T. C. Peterson, L. Warden, and X. Xie, Anal. Chem. 74, 1792 (2002).

    Article  Google Scholar 

  9. U. Kreibig and M. Volmer, “Optical Properties of Metal Clusters” (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  10. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, Izv. Vuz. Applied Nonlinear Dynamics 10 (Special English Issue No. 3), 172 (2002).

    Google Scholar 

  11. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B. 107, 668 (2003).

    Article  Google Scholar 

  12. N. G. Khlebtsov, L. A. Dykman, V. A. Bogatyrev, and B. N. Khlebtsov, Colloid J. 65, 552 (2003).

    Google Scholar 

  13. J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 485 (2003).

    Article  Google Scholar 

  14. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Anal. Chem. 67, 735 (1995).

    Article  Google Scholar 

  15. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).

    Article  Google Scholar 

  16. F. Caruso, Adv. Mater. 13, 11 (2001).

    Google Scholar 

  17. N. G. Khlebtsov, V. A. Bogatyrev, B. N. Khlebtsov, L. A. Dykman, and P. Englebienne, Colloid J. 65, 622 (2003).

    Google Scholar 

  18. J. H. W. Leuvering, P. J. H. M. Thal, M. van der Waart, and A. H. W. M. Schuurs, J. Immunoassay 1, 77 (1980).

    Google Scholar 

  19. N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, In: “Electromagnetic and Light Scattering by Nonspherical Particles: Theory and Applications,” F. Obelleiro, J. L. Rodriguez, and Th. Wriedt (Eds.), p. 43 (Vigo Univ. Press, Vigo, Spain, 1999).

    Google Scholar 

  20. N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, Colloid. J. 62, 765 (2000).

    Article  Google Scholar 

  21. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc. 122, 4640 (2000).

    Article  Google Scholar 

  22. G. S. Schatz, Theochem. 573, 73 (2001).

    Google Scholar 

  23. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature 382, 607 (1996).

    Article  Google Scholar 

  24. K. Sato, K. Hosokawa, and M. Maeda, J. Am. Chem. Soc. 125, 8102 (2003).

    Google Scholar 

  25. T. Ciesiolka and H.-J. Gabius, Anal. Biochem. 168, 280 (1988).

    Article  Google Scholar 

  26. V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, and N. G. Khlebtsov, In: “Optical Technologies in Biophysics and Medicine III,” V. V. Tuchin (Ed.), Proc. SPIE, Vol. 4707, p. 266 (SPIE, Bellingham, WA, 2002).

    Google Scholar 

  27. V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, V. K. Plotnikov, and N. G. Khlebtsov, Colloid. J. 64, 671 (2002).

    Article  Google Scholar 

  28. D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Anal. Chem. 75, 3440 (2003).

    Article  Google Scholar 

  29. X. Liu, H. Yuan, D. Pang, and R. Cai, Spectrochim. Acta Part A 60, 385 (2004).

    Google Scholar 

  30. B. Dragnea, Ch. Chen, E.-S. Kwak, B. Stein, and C. Ch. Kao, J. Am. Chem. Soc. 125, 6374 (2003).

    Article  Google Scholar 

  31. Y.-F. Wang, D.-W. Pang, Z.-L. Zhang, H.-Z. Zheng, J.-P. Cao, and J.-T. Shen, J. Med. Virol. 70, 205 (2003).

    Google Scholar 

  32. P. Englebienne, A. van Hoonacker, and J. Valsamis, Clin. Chem. 46, 2000 (2000).

    Google Scholar 

  33. P. Englebienne, A. van Hoonacker, and M. Verhas, Analyst 126, 1645 (2001).

    Article  Google Scholar 

  34. P. Englebienne, A. van Hoonacker, M. Verhas, and N. G. Khlebtsov, Combinatorial Chemistry & High Throughput Screening 6, 777 (2003).

    Google Scholar 

  35. N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

    Article  Google Scholar 

  36. F. Frederix, J. M. Friedt, K. H. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, and G. Borghs, Anal. Chem. 75, 6894 (2003).

    Article  Google Scholar 

  37. J. Haes and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).

    Article  Google Scholar 

  38. J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit, and R. P. Van Duyne, J. Phys. Chem. B 107, 1772 (2003).

    Article  Google Scholar 

  39. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, Nano Lett. 3, 935 (2003).

    Article  Google Scholar 

  40. A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).

    Article  Google Scholar 

  41. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, Curr. Opin. Biotechnol. 13, 40 (2002).

    Article  Google Scholar 

  42. N. G. Khlebtsov, I. L. Maksimova, V. V. Tuchin, and L. Wang, In: “Handbook of Optical Biomedical Diagnostics,” V. V. Tuchin (Ed.), p. 31 (SPIE, Bellingham, WA, 2002).

    Google Scholar 

  43. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, J. Phys. Chem. B 104, 564 (2000).

    Article  Google Scholar 

  44. D. Eck, C. A. Helm, N. J. Wagner, and K. A. Vaynberg, Langmuir 17, 957 (2001).

    Article  Google Scholar 

  45. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (John Wiley &Sons, New York, 1983)

    Google Scholar 

  46. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc. 123, 1471 (2001).

    Article  Google Scholar 

  47. G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. T. Scheutjens Cosgrove, and B. Vincent, “Polymers at Interfaces” (Chapman&Hall, London, 1993).

    Google Scholar 

  48. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, J. Colloid Interface Sci. 180, 436 (1996).

    Article  Google Scholar 

  49. P. B. Johnson and R. W. Christy, Phys. Rev. B 12, 4370 (1973).

    Google Scholar 

  50. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, “Scattering, Absorption, and Emission of Light by Small Particles” (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  51. H. Xu and M. Käll, Sens. Actuators B Chem. 87, 244 (2002).

    Article  Google Scholar 

  52. Z. C. Wu and Y. P. Wang, Radio Sci. 26, 1393 (1991).

    Google Scholar 

  53. N. G. Khlebtsov and A. G. Melnikov, Colloid. J. 60, 781 (1998).

    Google Scholar 

  54. E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973).

    Article  Google Scholar 

  55. A. Lakhtakia and G. W. Mulholland, J. Res. Natl. Inst. Stand. Technol. 98, 699 (1993).

    Google Scholar 

  56. J. C. Ku, J. Opt. Soc. Am. A 10, 336 (1993).

    Google Scholar 

  57. B. T. Draine, In: “Light scattering by Nonspherical Particles,” M. I. Mishchenko, J. W. Hovenier, L. D. Travis (Eds.), p. 131 (Academic Press, San Diego, 2000).

    Google Scholar 

  58. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, Phys. Rev. B 53, 2425 (1996).

    Article  Google Scholar 

  59. N. G. Khlebtsov, In: “Light Scattering by Nonspherical Particles: Halifax Contributions,” G. Videen, Q. Fu, and P. Chylek (Eds.), p. 123 (Army Research Laboratory, Adelphy MD, 2000).

    Google Scholar 

  60. N. G. Khlebtsov, Opt. Spectrosc. 90, 408 (2001).

    Article  Google Scholar 

  61. Y.-I. Xu, Appl. Opt. 34, 4573 (1995).

    Google Scholar 

  62. K. A. Fuller and D. W. Mackowski, In: “Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications,” M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Eds.), p. 225 (Academic Press, San Diego, 2000).

    Google Scholar 

  63. N. G. Khlebtsov, A. G. Melnikov, and Y.-I. Xu, In: “Electromagnetic and Light Scattering-Theory and Applications VII,” Th. Wriedt (Ed.), p. 147 (Universität Bremen, Bremen, 2003).

    Google Scholar 

  64. N. G. Khlebtsov, A. G. Melnikov, and Y.-I. Xu, ibid. p. 143.

    Google Scholar 

  65. D. W. Mackowski and M. I. Mishchenko, J. Opt. Soc. Am. A 13, 2266 (1996).

    Google Scholar 

  66. Y.-I. Xu and N. G. Khlebtsov, J. Quant. Spectr. Radiat. Ttransfer 79–80, 1121 (2003).

    Google Scholar 

  67. K. L. Kelly, A. A. Lazarides, and G. C. Schatz, Comp. Sci. Eng. 3, 67 (2001).

    Google Scholar 

  68. D. W. Mackowski, J. Opt. Soc. Am. A 11, 2851 (1994).

    Google Scholar 

  69. M. I. Mishchenko, D. W. Mackowski, and L. D. Travis, Appl. Opt. 34, 4589 (1995).

    Google Scholar 

  70. A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460 (2000).

    Article  Google Scholar 

  71. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, and A. G. Melnikov, In: Abstracts of NATO Advanced Study Institute on “Photopolarimetry in Remote Sensing”, G. Videen, Ya. Yatskiv, A. Vid’machenko, V. Rosenbush, and M. Mishchenko (Eds.), p. 46 (Army Research Laboratory, Adelphy MD, 2003).

    Google Scholar 

  72. N. G. Khlebtsov, L. A. Trachuk, and A. G. Melnikov, Opt. Spectrosc. 94(6), (2004, in press).

    Google Scholar 

  73. L. L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 343 (2003).

    Google Scholar 

  74. C. L. Haynes, A. D. McFarland, L. L. Zhao, G. C. Schatz, R. P. Van Duyne, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, J. Phys. Chem. B 107, 7337 (2003).

    Google Scholar 

  75. M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, and P. Meakin, Nature 339, 360 (1989).

    Article  Google Scholar 

  76. L. A. Dykman, Ya. M. Krasnov, V. A. Bogatyrev, and N. G. Khlebtsov, In: “Optical Technologies in Biophysics and Medicine II,” V. V. Tuchin (Ed.), Proc. SPIE, Vol. 4241, p. 371 (SPIE, Bellingham, WA, 2001).

    Google Scholar 

  77. P. Meakin, Ann. Rev. Phys. Chem. 39, 237 (1988).

    Article  Google Scholar 

  78. G. Frens, Nature Phys. Sci. 241, 20 (1973).

    Google Scholar 

  79. L. A. Dykman, A. A Lyakhov, V. A. Bogatyrev, and S. Yu. Shchyogolev, Colloid J. 60, 700 (1998).

    Google Scholar 

  80. L.A. Dykman and V. A. Bogatyrev, Biochemistry (Moscow) 62, 350 (1997).

    Google Scholar 

  81. W. Nowicki, Colloids and Surfaces A 194, 159 (2001).

    Google Scholar 

  82. A. Doron, E. Joselevich, A. Schlitter, and I. Willner, Thin Solid Films 340, 183 (1999).

    Article  Google Scholar 

  83. K. R. Brown, D. G. Walter, and M. J. Natan, Chem. Mater. 12, 306 (2000).

    Google Scholar 

  84. K. R. Brown and M. J. Natan, Langmuir 14, 726 (1998).

    Google Scholar 

  85. Yu. E. Danilova, “Localization of Optical Excitations in Colloidal Silver Aggregates’” PhD Thesis (Institute of Automatics and Electrometry RAS, Novosibirsk, 1999).

    Google Scholar 

  86. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, and Ya. M. Krasnov, Th. Wriedt (Ed.), p. 135 (Universität Bremen, Bremen, 2003).

    Google Scholar 

  87. V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, and N. G. Khlebtsov, Opt. Spectrosc. 96, 128 (2004).

    Article  Google Scholar 

  88. A. Hubbard (Ed.), “Encyclopedia of Surface and Colloid Science” (Marcell Dekker, New York, 2002).

    Google Scholar 

  89. M. Faraday, Philos. Trans. R. Soc. London 147, 145 (1857).

    Google Scholar 

  90. C. N. Likos, K. A. Vaynberg, H. Löven, and N. J. Wagner, Langmuir 16, 4100 (2000).

    Article  Google Scholar 

  91. S. Seelenmeyer and M. Ballauff, Macromol. Symp. 145, 9 (1999).

    Google Scholar 

  92. B. J. Berne and R. Pecora, “Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics” (Dover Publications, Mineola NY, 2000).

    Google Scholar 

  93. J. M. C. Martin, M. Pâques, T. A. M. van der Velden-de Groot, and E. C. Beuvery, J. Immunoassay 11, 31 (1990).

    Google Scholar 

  94. G. D. Parfitt and C. H. Rochester (Eds.), “Adsorption from Solution at the Solid/Liquid Interface” (Academic Press, New York, 1983).

    Google Scholar 

  95. F. Green, “The Colloidal Gold Reaction of the Cerebrospinal Fluid” (Medizin Fritz-Dieter Söhn, Berlin, 1925).

    Google Scholar 

  96. N. F. Maclagan, Brit. J. Exp. Pathol. 25, 15 (1944).

    Google Scholar 

  97. W. Faulk and G. Taylor, Immunochemistry 8, 1081 (1971).

    Google Scholar 

  98. C. Neagu, K. O. van der Werf, C. A. J. Putman, Y. M. Kraan, B. G. de Grooth, N. F. van Hulst, and J. Greve, J. Struct. Biol. 112, 32 (1994).

    Article  Google Scholar 

  99. M. Moeremans, G. Daneels, A. van Dijck, G. Langanger, and J. De Mey, J. Immunol. Meth. 74, 353 (1984).

    Article  Google Scholar 

  100. J.-H. Cho and S.-H. Paek, Biotechnology and Bioengineering 75, 725 (2001).

    Article  Google Scholar 

  101. K. Glynou, P. C. Ioannou, T. K. Christopoulos, and V. Syriopoulou, Anal. Chem. 75, 4155 (2003).

    Article  Google Scholar 

  102. S. Shiosaka, H. Kiyama, A. Wanaka, and M. Tohyama, Brain Research 382, 399 (1986).

    Article  Google Scholar 

  103. M. A. Hayat, (Ed.), “Colloidal Gold: Principles, Methods, and Applications” (Academic Press, San Diego, 1989).

    Google Scholar 

  104. A. Han, M. Dufva, E. Belleville, and C. B. V. Christensen, Lab. Chip. 3, 329 (2003).

    Google Scholar 

  105. N. T. K. Thanh, J. H. Rees, and Z. Rosenzweig, Anal. Bioanal. Chem. 374, 1174 (2002).

    Article  Google Scholar 

  106. C. X. Zhang, Y. Zhang, X. Wang, Z. M. Tang, and Z. H. Lu, Anal. Biochem. 320, 136 (2003).

    Article  Google Scholar 

  107. V. M. Shalaev (Ed.), “Topics in Applied Physics. Optical Properties of Nanostructured Random Media,” (Springer-Verlag, Berlin-Heidelberg, 2002).

    Google Scholar 

  108. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, Anal. Chem. 71, 4903 (1999).

    Article  Google Scholar 

  109. C. W. Brown, Y. Li, J. A. Seelenbinder, P. Pivarnik, A. G. Rand, S. V. Letcher, O. J. Gregory, and M. J. Platek, Anal. Chem. 70, 2991 (1998).

    Google Scholar 

  110. S. P. Vyas and V. Sihorkar, Advanced Drug Delivery Reviews 43, 101 (2000).

    Article  Google Scholar 

  111. D. Chen and L. G. Payne, Cell Research 12, 97 (2002).

    Google Scholar 

  112. Z. Zhao, T. Wakita, and K. Yasui, J. Virol. 77, 4248 (2003).

    Google Scholar 

  113. S. Liu, D. Leech, and H. Ju, Analytical Letters 36, 1 (2003).

    Google Scholar 

  114. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Science 289, 1757 (2000).

    Article  Google Scholar 

  115. A. Csáki, G. Maubach, D. Born, J. Reichert, and W. Fritzsche, Single Mol. 3, 275 (2002).

    Article  Google Scholar 

  116. S. J. Oldenburg, Ch. C. Genick, K. A. Clark, and D. A. Schultz, Anal. Biochem. 309, 109 (2002).

    Article  Google Scholar 

  117. J. J. Storhoff, S. S. Marla, P. Bao, S. Hagenow, H. Mehta, A. Lucas, V. Garimella, T. Patno, W. Buckingham, W. Cork, and U. R. Müller, Biosensors Bioelectronics 19, 875 (2004).

    Article  Google Scholar 

  118. E. V. Egorenkova, S. A. Konnova, Yu. P. Fedonenko, L. A. Dykman, and V. V. Ignatov, Microbiology 70, 36 (2001).

    Article  Google Scholar 

  119. M. I. Chumakov, L. A. Dykman, V. A. Bogatyrev, and I. V. Kurbanova, Microbiology 70, 232 (2001).

    Article  Google Scholar 

  120. V. A. Bogatyrev, L. Yu. Ivanova, B. I. Schwartsburd, and N. G. Khlebtsov, In: 19th Meeting FEBS, July 2–7, 1989, Abstr. Book, p. 30 (FEBS, Rome, 1989).

    Google Scholar 

  121. V. A. Bogatyrev, L. A. Dykman, L. Yu. Matora, and B. I. Schwartsburd, FEMS Microbiol. Lett. 96, 115 (1992).

    Article  Google Scholar 

  122. L. A. Dykman and V. A. Bogatyrev, FEMS Immunol. Med. Microbiol. 27, 135 (2000).

    Google Scholar 

  123. M. V. Sumaroka, L. A. Dykman, V. A. Bogatyrev, N. V. Evseeva, I. S. Zaitseva, S. Yu. Shchyogolev, and A. D. Volodarsky, J. Immunoassay 21, 401 (2000).

    Google Scholar 

  124. L. A. Dykman, V. A. Bogatyrev, I. S. Zaitseva, M. K. Sokolova, V. V. Ivanov, and O. I. Sokolov, Biophysics 47, 587 (2002).

    Google Scholar 

  125. A. A. Kamnev, L. A. Dykman, P. A. Tarantilis, and M. G. Polissiou, Bioscience Reports 22, 541 (2002).

    Article  Google Scholar 

  126. M. V. Sumaroka, L. A. Dykman, V. A. Bogatyrev, I. S. Zaitseva, O. I. Sokolov, S. Yu. Shchyogolev, and W. J. Harris, Allergology and Immunology 1, 134 (2000).

    Google Scholar 

  127. L. A. Dykman, M. V. Sumaroka, S. A. Staroverov, I. S. Zaitseva, and V. A. Bogatyrev, Biol. Bull. 31 (2004) (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Khlebtsov, N., Melnikov, A.G., Dykman, L.A., Bogatyrev, V.A. (2004). Optical Properties and Biomedical Applications of Nanostructures Based on Gold and Silver Bioconjugates. In: Videen, G., Yatskiv, Y., Mishchenko, M. (eds) Photopolarimetry in Remote Sensing. NATO Science Series II: Mathematics, Physics and Chemistry, vol 161. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2368-5_12

Download citation

Publish with us

Policies and ethics