Skip to main content

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 4))

  • 1459 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hatakeyama, H., 2002, Thermal analysis of environmentally compatible polymers containing plant components in the main chain. J. Therm. Anal. Cal., 70, 755–759.

    Article  CAS  Google Scholar 

  2. Hatakeyama, H., Asano, Y. and Hatakeyama, T., 2003, Biobased polymeric materials. In Biodegradable Polymers and Plastics (Chellini, E. and Solario, R. eds.), Kluwer Academic / Plenum Publishers, New York, pp. 103–119.

    Google Scholar 

  3. Hirose, S. Kobashigawa K. and Hatakeyama, H. 1994, Preparation and physical properties of polyurethanes derived from molasses. Sen-i Gakkaishi, 50, 538–542.

    CAS  Google Scholar 

  4. Morohoshi, N., Hirose S., Hatakeyama, H., Tokashiki, T. and Teruya, K., 1995, Biodegradation of polyurethane foams derived from molasses. Sen-i Gakkaishi, 51, 143–149.

    CAS  Google Scholar 

  5. Zetterlund, P., Hirose, S., Hatakeyama, T., Hatakeyama, H. and Albertsson, A-C., 1997, Thermal and mechanical properties of polyurethanes derived from mono-and disaccharides. Polym. Inter., 42, 1–8.

    CAS  Google Scholar 

  6. Hatakeyama, H., Kobahigawa, K., Hirose, S. and Hatakeyama, T., 1998, Synthesis and physical properties of polyurethanes from saccharide-based polycaprolactones. Macromol. Symp., 130, 127–138.

    CAS  Google Scholar 

  7. Hatakeyama, T., Tokashiki, T. and Hatakeyama, H., 1998, Thermal properties of polyurethanes derived from molasses before and after biodegradation, Macromol. Symp., 130, 139–150.

    CAS  Google Scholar 

  8. Hatakeyama, H., 2000, Adaptation of plant components in molecular of environmentally compatible polymers. Petrotech, 23, 724–730.

    CAS  Google Scholar 

  9. Hatakeyama, H., 2001, Thermal properties of biodegradable polymers. Netsu Sokutei, 28, 183–191.

    CAS  Google Scholar 

  10. Hatakeyama, H., 2001, Biodegradable polyurethane using saccharide and lignin. In Practical Technology of Bio-degradable Plastics, CMC, Tokyo, pp. 97–108.

    Google Scholar 

  11. Asano, Y., Hatakeyama, H., Hirose, S. and Hatakeyama, T., 2001, Preparation and physical properties of saccharide-based polyurethane foams. In Recent Advances in Environmentally Compatible Polymers (J. F. Kennedy, G. O. Philips, P. A. Williams and H. Hatakeyama eds.), Woodhead Publishing Ltd., Cambridge, UK, pp. 241–246.

    Google Scholar 

  12. Yoshida, H., Mörck, R., Kringstad, K. P. and Hatakeyama, H., 1990, Kraft lignin in polyurethanes. II. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci., 40, 1819–1832.

    Article  CAS  Google Scholar 

  13. Reimann, A., Mörck, R., Hirohisa, Y., Hatakeyama, H. and K. P. Kringstad, 1990, Kraft lignin in polyurethanes. III. Effects of the molecular weight of PEG on the properties of polyurethanes from a kraft lignin-PEG-MDI system. J. Appl. Polym. Sci., 41, 39–50.

    Article  CAS  Google Scholar 

  14. Nakamura, K., Mörck, R., Reimann, A., Kringstad, K. P. and Hatakeyama, H., 1991, Mechanical properties of solvolysis lignin-derived polyurethanes. Polymer for advanced technology, 2, 41–47.

    CAS  Google Scholar 

  15. Nakamura, K., Hatakeyama, T. and Hatakeyama, H., 1992, Thermal properties of solvolysis lignin-derived polyurethanes. Polymer for advanced technology, 3, 151–155.

    CAS  Google Scholar 

  16. Hirose, S., Nakamura, K., Hatakeyama, H., Meadows, J., Williams, P. A. and Phillips, G. O., 1993, Preparation and mechanical properties of polyurethane foams from lignocellulose dissolved in polyethylene glycol. In Cellulosics: Chemical, Biochemical and Materials (J. F. Kennedy Williams P. A. and Phillips, G. O., eds.), Ellis Horwood Limited, Chichester, UK, pp. 317–331.

    Google Scholar 

  17. Nakamura, K., Hatakeyama, H., Meadows, J., Williams, P. A. and Phillips, G. O., 1993, Mechanical properties of polyurethane foams derived from eucalyptus kraft lignin, In Cellulosics: Chemical, Biochemical and Materials (J. F. Kennedy Williams P. A. and Phillips, G. O., eds.), Ellis Horwood Limited, Chichester, UK, pp. 333–340.

    Google Scholar 

  18. Hatakeyama, H., Hirose, S., Nakamura, K. and Hatakeyama, T. 1993, New types of polyurethanes derived from lignocellulose and saccharides, In Cellulosics: Chemical, Biochemical and Materials (J. F. Kennedy Williams P. A. and Phillips, G. O., eds.), Ellis Horwood Limited, Chichester, UK, pp. 525–536.

    Google Scholar 

  19. Hatakeyama, H., 1993, Molecular design of biodegradable plastics, Kagaku to Seibutsu, 31, 308–311.

    CAS  Google Scholar 

  20. Hatakeyama, H., 1993, Biodegradable plastics derived from plant resources, Mokuzai Kogyo, 48, 161–165.

    CAS  Google Scholar 

  21. Hatakeyama, H. and Hirose, S., 1994, Design of biodegradable materials. Kogyo Zairyo, 42, 34–37.

    CAS  Google Scholar 

  22. Nakamura, K., Nishimura, Y., Hatakeyama, T. and Hatakeyama, H., 1995, Mechanical and thermal properties of biodegradable polyurethanes derived from sericin. Sen-i Gakkaishi, 51, 111–117.

    CAS  Google Scholar 

  23. Tokashiki, T., Hirose, S. and Hatakeyama, H., 1995, Preparation and physical properties of polyurethanes from oligosaccharides and lignocellulose system. Sen-i Gakkaishi, 51, 118–122.

    CAS  Google Scholar 

  24. Hirose, S., Kobashigawa, K. and Hatakeyama, T., 1996, Preparation and physical properties of biodegradable polyurethanes derived from the lignin-polyester-polyol system, In Cellulosics: Chemical, Biochemical and Materials (J. F. Kennedy Williams P. A. and Phillips, G. O., eds.), Ellis Horwood Limited, Chichester, UK, pp. 277–282.

    Google Scholar 

  25. Nakano, J., Izuta, Y., Orita, T., Hatakeyama, H., Kobashigawa, K., Teruya, K. and Hirose, S., 1997, Thermal and mechanical properties of polyurethanes derived from fractionated kraft lignin. Sen-i Gakkaishi, 53, 416–422.

    CAS  Google Scholar 

  26. Hirose, S., Kobashigawa, K., Izuta, Y. and Hatakeyama, H., 1998, Thermal degradation of polyurethanes containing lignin structure by TG-FTIR. Polymer International, 47, 1–8.

    Article  Google Scholar 

  27. Bonnel, D., 2001, Scanning Probe Microscopy and Spectroscopy, Second Edition, Wiley-VCH, New York.

    Google Scholar 

  28. Machihara, A. and Kawamura, M., 2001, Recent utilization of lignin. In Recent Advances in Technology for Wood Chemical (G. Meshituka ed.), CMC, Tokyo, 127–137.

    Google Scholar 

  29. Lin, S. W. and Dence, C. W., 1992, Methods in Lignin Chemaistry, Spring Verlag, Berlin, pp. 3–16.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2005). Introduction. In: Thermal Properties of Green Polymers and Biocomposites. Hot Topics in Thermal Analysis and Calorimetry, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2354-5_1

Download citation

Publish with us

Policies and ethics