Skip to main content

Chemotactic Search in Complex Environments

From Insects To Real-world Applications

  • Conference paper
Book cover Electronic Noses & Sensors for the Detection of Explosives

Abstract

Searching for trace quantities of predefined chemical compounds in natural environments, as in the case of explosives detection, is a difficult and challenging technological problem. Much chemical interference is likely to be present and the environment itself is often complex, nonstationary and unpredictable. Here we discuss nature’s ultimate solution to this problem, in the form of pheromone mediated chemotactic search of the moth. We argue here that this organism provides an ideal model for solving the technological problem and we discuss in detail the exploitation of specific sensory processing and behavioural mechanisms relevant to the task. Finally, we discuss the project AMOTH in which the authors work towards a fully implemented, real-world instantiation of these sensorimotor mechanisms in the form of an unmanned aerial vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.C. Persaud and G.H. Dodd, Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, Nature 299 (1982) 352–355.

    Article  CAS  PubMed  Google Scholar 

  2. T.C. Pearce, Computational parallels between the biological olfactory pathway and its analogue ‘the electronic nose’: Part I. Biological olfaction, BioSystems 41 (1997) 43–67.

    Article  CAS  PubMed  Google Scholar 

  3. T.C. Pearce and M. Sanchez-Montanes, Chemical Sensor Array Optimization: Geometric and Information Theoretic Approaches, in Handbook of Machine Olfaction, Pearce T.C., Schiffman S.S., Nagle H.T., Gardner J.W. (eds), Wiley-VCH: Weinheim, (2003).

    Google Scholar 

  4. C. Dulac and A.T. Torello, Molecular detection of pheromone signals in mammals: from genes to behaviour, Nature Reviews Neuroscience 4 (2003) 551–562.

    Article  CAS  PubMed  Google Scholar 

  5. B.S. Hansson, Insect Olfaction, Springer-Verlag: Berlin, (2002).

    Google Scholar 

  6. R.J. Clarke, The flavour of coffee, Dev. Food Science 3B (1986) 1–47.

    CAS  Google Scholar 

  7. G. Sicard and A. Holley, Receptor cell responses to odorants: similarities and differences among odorants, Brain Res. 292 (1984) 283–96.

    Article  CAS  PubMed  Google Scholar 

  8. C. Quero et al., Responses of male Helicoverpa zea to single pulses of sex pheromone and behavioural antagonist, Physiological Entomology 26 (2001) 106–115.

    Article  Google Scholar 

  9. T.C. Baker and K.F. Haynes, Pheromone-mediated optomotor anemotaxis and altitude control exhibited by male oriental fruit moths in the field, Physiological Entomology 21 (1996) 20–32.

    Article  CAS  Google Scholar 

  10. L.P.S. Kuenen and R.T. Carde, Strategies for recontacting a lost pheromone plume — casting and upwind flight in the male gypsy-moth, Physiological Entomology 19 (1994) 15–29.

    Article  Google Scholar 

  11. M.O. Harris and S.P. Foster, Wind-tunnel studies of sex pheromone-mediated behavior of the hessian fly (Diptera, cecidomyiidae), Journal of Chemical Ecology 17 (1991) 2421–2435.

    Article  CAS  Google Scholar 

  12. E. Hartlieb and P. Anderson, Olfactory-released behaviours, in Insect Olfaction, (Hansson, B., Ed.), Springer-Verlag: Berlin, (1999), pp. 315–349.

    Google Scholar 

  13. M. Angioy, A. Desogus, I.T. Barbarossa, P. Anderson and B.S. Hansson, Extreme sensitivity in an olfactory system, Chem. Senses 28 (2003) 279–284.

    Article  PubMed  Google Scholar 

  14. H. Ljungberg, P. Anderson and B.S. Hansson, Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae), J. Insect Physiol. 39 (1993) 253–260.

    Article  CAS  Google Scholar 

  15. T. Kikas, H. Ishida, D.R. Webster and J. Janata, Chemical plume tracking. 1. Chemical information encoding, Anal Chem. 73 (2001) 3662–8.

    Article  CAS  PubMed  Google Scholar 

  16. S. Anton and U. Homberg, Antennal lobe structure. in Insect Olfaction, Hansson B.S. (ed.), Springer-Verlag: Berlin, (1999), pp. 97–124.

    Google Scholar 

  17. M.A. Carlsson et al., Spatial representation of odors in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae), Chemical Senses 27 (2002) 231–244.

    Article  PubMed  Google Scholar 

  18. B.S. Hansson et al., Chemical Communication in Heliothine Moths. 5. Antennal Lobe Projection Patterns of Pheromone-Detecting Olfactory Receptor Neurons in the Male Heliothis-Virescens (Lepidoptera, Noctuidae), Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology 177 (1995) 535–543.

    CAS  Google Scholar 

  19. B.S. Hansson et al., Functional specialization of olfactory glomeruli in a moth, Science 256 (1992) 1313–1315.

    Article  CAS  ADS  PubMed  Google Scholar 

  20. L.B. Vosshall, The molecular logic of olfaction in Drosophila, Chemical Senses 26 (2001) 207–213.

    Article  CAS  PubMed  Google Scholar 

  21. T.C. Pearce, P.F.M. Verschure, J. White and J.S. Kauer, Robust stimulus encoding in olfactory processing: hyperacuity and efficient signal transmission, in Neural Computation Architectures Based on Neuroscience, Wermter S., J. Austin, and Willshaw D. (eds.), Springer-Verlag, (2001).

    Google Scholar 

  22. T.A. Christensen et al., Discrimination of sex-pheromone blends in the olfactory system of the moth, Chemical Senses 14 (1989) 463–477.

    Article  CAS  Google Scholar 

  23. J.R. King et al., Response characteristics of an identified, sexually dimorphic olfactory glomerulus, Journal of Neuroscience 20 (2000) 2391–2399.

    CAS  PubMed  Google Scholar 

  24. J.P. Rospars and J.G. Hildebrand, Sexually dimorphic and isomorphic glomeruli in the antennal lobes of the sphinx moth Manduca sexta, Chemical Senses 25 (2000) 119–129.

    Article  CAS  PubMed  Google Scholar 

  25. U. Homberg et al., Structure and function of the deutocerebrum in insects, Annual Review of Entomology 34 (1989) 477–501.

    Article  CAS  PubMed  Google Scholar 

  26. U. Homberg et al., Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta, Cell and Tissue Research 254 (1988) 255–281.

    Article  CAS  PubMed  Google Scholar 

  27. J.L. Todd, S. Anton, B.S. Hansson B.S and T.C. Baker, Functional organization of the macroglomerular complex related to behaviorally expressed olfactory redundancy in male cabbage looper moth, Physiol. Entomol. 20 (1995) 349–361.

    Article  Google Scholar 

  28. B.G. Berg, T.J. Almaas, J.G. Bjaalie and H. Mustaparta, The macroglomerular complex of the antennal lobe in the tobacco budworm moth Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds, J. Comp. Physiol. A. 183 (1998) 669–682.

    Article  Google Scholar 

  29. S.A. Ochieng, P. Anderson and B.S. Hansson, Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae), Tissue Cell. 27 (1995) 221–232.

    Article  CAS  PubMed  Google Scholar 

  30. M.A. Carlsson and B.S. Hansson, Dose-response characteristics of glomerular activity in the moth antennal lobe, Chemical Senses 28 (2003) 269–278.

    Article  PubMed  Google Scholar 

  31. J. Meijerink, M.A. Carlsson and B.S. Hansson, Spatial representation of odorant structure in the moth antennal lobe: a study of structure response relationships at low doses, J. Comp. Neurol. 467 (2003) 11–21.

    Article  PubMed  Google Scholar 

  32. C.G. Galizia, K. Nägler, B. Hölldobler and R. Menzel, Odor coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera), Eur. J. Neurosci. 10 (1998) 2964–2974.

    Article  CAS  PubMed  Google Scholar 

  33. L.B. Vosshall, A.M. Wong and R. Axel, An olfactory sensory map in the fly brain, Cell. 102 (2000) 147–159.

    Article  CAS  PubMed  Google Scholar 

  34. Q. Gao, B. Yuan and A. Chess, Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe, Nat. Neurosci. 3 (2000) 780–785.

    Article  CAS  PubMed  Google Scholar 

  35. B.S. Hansson, Antennal lobe projection patterns of pheromone-specific olfactory receptor neurons in moths, in Insect pheromone research: new directions, R.T. Cardé, A.K. Minks (eds.), Chapman & Hall: New York, (1997), pp. 164–183.

    Google Scholar 

  36. M.A. Carlsson, C.G. Galizia and B.S. Hansson, Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae), Chemical Senses 27 (2002) 231–44.

    Article  PubMed  Google Scholar 

  37. S. Anton and B.S. Hansson, Sex pheromone and plant-associated odour processing in antennal lobe interneurons of male Spodoptera littoralis (Lepidoptera: Noctuidae), J. Comp. Physiol. A 176 (1995) 773–789.

    Article  CAS  Google Scholar 

  38. B.S. Hansson, S. Anton and T.A. Christensen, Structure and function of antennal lobe interneurons in the male turnip moth, Agrotis segetum (Lepidoptera: Noctuidae), J. Comp. Physiol. A 175 (1994) 547–562.

    Article  Google Scholar 

  39. R.E. Charlton and R.T. Carde, Orientation of male gypsy moths, lymantria dispar (l.) to pheromone sources: The role of olfactory and visual cues, Journal Insect Behavior 3 (1990) 443–469.

    Article  Google Scholar 

  40. H. Ishida and T. Moriizumi, Machine Olfaction for Mobile Robots, in Handbook of Machine Olfaction, Pearce T.C., Schiffman S.S., Nagle H.T., Gardner J.W. (eds), Wiley-VCH: Weinheim, (2003).

    Google Scholar 

  41. J. Murlis and C. Jones, Fine scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources, Physiol. Ent. 6 (1995) 71–86.

    Article  Google Scholar 

  42. M.A. Willis, J. Murlis and R.T. Cardé, Spatial and temporal structures of pheromone plumes in fields and forests, Physiol. Entomol. 25 (2000) 211–222.

    Article  Google Scholar 

  43. A. Ludlow, J. Perry, C. David, J. Kennedy and C. Wall, A reappraisal of insect flight towards a distant source of wild-borne odour, Journal of Chemical Ecology 8 (1982) 1207–1215.

    Article  Google Scholar 

  44. M. Willis, Odor-guided flight in moths, web-site http://flightpath.neurobio.arizona.edu/newindex.html.

  45. H.Y. Fadamiro, C. Quero and T.C. Baker, Responses of male helicoverpazea to single pulses of sex pheromone and behavioural antagonist, Physiological Entomology (2001)

    Google Scholar 

  46. J.S. Kennedy, The visual responses of flying mosquitoes, Proceedings Zoological Society London 109 (1940) 221–242.

    Google Scholar 

  47. R. Wright, The olfactory guidance of flying insects, Canadian Entomology 90 (1958) 80–89.

    Google Scholar 

  48. D. Frizel, F. Kellog and R. Wright, The olfactory guidance of flying insects, Canadian Entomology 94 (1962) 884–888.

    Article  Google Scholar 

  49. J.S. Kennedy and D. Marsh, Pheromone-regulated anemotaxis in flying moths, Science 184 (1974) 999–1001.

    Article  CAS  ADS  PubMed  Google Scholar 

  50. J.S. Kennedy, D.M. Marsh and A.R. Ludlow, Anemotactic zigzagging flight in male moths stimulated by pheromone, Physiological Entomology 3 (1978) 221–240.

    Article  Google Scholar 

  51. J.S. Kennedy, D.M. Marsh and A.R. Ludlow, Analysis of zigzagging flight in moths: a correction, Physiological Entomology 6 (1981) 225.

    Article  Google Scholar 

  52. T.C. Baker and L.P.S. Kuenen, Pheromone source location by flying moths: a supplementary non-anemotactic mechanism, Science 216 (1982) 424–427.

    Article  ADS  CAS  Google Scholar 

  53. T. Baker, Upwind flight and casting flight: complimentary phasic and tonic systems used for location of a sex pheromone sources by male moths, Proceedings of the 10th Internation Symposium on Olfaction and Taste, (1990), pp. 18–25.

    Google Scholar 

  54. A. Mafra-Neto and R.T. Cardé, Influence of plume structure and pheromone concentration on upwind flight of caudra cautella males, Physiol. Entomol. 20 (1995) 117–133.

    Article  Google Scholar 

  55. M.A. Willis and T.C. Baker, Effects of varying pheromone component ratios on the zigzagging flight movements of grapholita molesta, Journal of Insect Behavior 1 (1998) 357–371.

    Article  Google Scholar 

  56. A. Mafra-Neto and R.T. Carde, Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths, Nature 369 (1994) 142–144.

    Article  CAS  ADS  Google Scholar 

  57. R.T. Cardé and T.E. Hagaman, Behavioral responses of the gypsy moth in a wind tunnel to air-borne enantiomers of disparlure, Environ. Entomol. 8 (1979) 475–484.

    Google Scholar 

  58. V.G. Dethier, Sniff, flick, and pulse: an appreciation of interruption, Proc. Am. Philos. Soc. 131 (1987) 159–179.

    Google Scholar 

  59. W. Lemon and W. Getz, Temporal resolution of general odour pulses by olfactory sensory neurons in american cockroaches, J. Exp. Biol. 200 (1997) 1809–1819.

    PubMed  Google Scholar 

  60. W.C. Lemon and W.M. Getz, Rate code input produces temporal code output from cockroach antennal lobes, BioSystems 58 (2000) 151–8.

    Article  CAS  PubMed  Google Scholar 

  61. T.A. Christensen and J.G. Hildebrand, Coincident stimulation with pheromone components improves temporal pattern resolution in central olfactory neurons, J. Neurophysiol. 58 (1987) 151–158.

    Google Scholar 

  62. K.A. Justus Bau and R.T. Cardé, Antennal resolution of pheromone plumes in three moth species, J. Insect Physiol. 48 (2002) 422–433.

    Google Scholar 

  63. N.J. Vickers and T.C. Baker, Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in heliothis virescens (f.) males, Journal of Comparative Physiology A 178 (1996) 831–847.

    Article  Google Scholar 

  64. T.A. Mustaparta, N.J. Vickers and T.C. Baker, Chemical communication in heliothine moths. iv. Flight behavior of male helicoverpa zea and heliothis virescens in response to varying ratios of intra-and interspecific sex pheromone components, Journal of Comp. Physiol. A 178 (1987) 831–847.

    Google Scholar 

  65. J.L. Todd, A. Cossé and T.C. Baker, Neurons discovered in male helicoverpazea antennae that correlate with pheromone-mediated attraction and interspecific antagonism, J. Comp. Physiol. A 182 (1998) 585–594.

    Article  Google Scholar 

  66. P.F.M. Verschure, T. Voegtlin and R.J. Douglas, Environmentally mediated synergy between perception and behaviour in mobile robots, Nature 425 (2003) 620–4.

    Article  CAS  ADS  PubMed  Google Scholar 

  67. J.M. Blanchard and P.F.M. Verschure, Using a mobile robot to study locust collision avoidance responses, International Journal of Neural Systems 9 (1999) 405–410.

    Article  CAS  PubMed  Google Scholar 

  68. C. von Planta, J. Conradt, A. Jencik and P.F.M. Verschure, A flying robot to study navigation in freely flying insects, in Proceedings of the International Conference on Artificial Neural Networks-ICANN02: Madrid, Spain, August 2002, pp. 1268–74. Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Pearce, T. et al. (2004). Chemotactic Search in Complex Environments. In: Gardner, J.W., Yinon, J. (eds) Electronic Noses & Sensors for the Detection of Explosives. NATO Science Series II: Mathematics, Physics and Chemistry, vol 159. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2319-7_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2319-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2317-0

  • Online ISBN: 978-1-4020-2319-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics