Skip to main content

The Chemistry of the Origin of Life

  • Chapter
Astrobiology: Future Perspectives

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

Astrobiology is an emerging interdisciplinary science that investigates experimentally the origin of life on the Earth and its distribution in the Universe. It encompasses scientific disciplines from astronomy to geology, chemistry, paleontology, biology and ecology with the goal to understand — to name only a few examples — the formation of solar systems (through detection of extrasolar planetary system and the exploration of our Solar system), to investigate the origin and prebiotic formation of organic compounds that could have been important for the origin of life on the Earth (including the origin of chirality), to determine the age of the oldest molecular fossils and other indicators on Earth to constrain the time for the origin of life, or to understand the complexity of the earliest organisms by phylogenetic and biochemical analysis and of modern organisms. This interdisciplinary approach is necessary to understand the implications in the different fields and to close the gaps in our knowledge, for example on the role of RNA in ancient organisms, the origin of protein biosynthesis or, in another field, the surface conditions on the early Earth. Astrobiology also has strong influences on future space missions, such as the Rosetta mission to investigate the composition of a comet, or future missions to Mars that very likely will carry instruments to search for traces of extinct or extant life on that planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, S. L., A Production of Amino Acids under Possible Primitive Earth Conditions, Science 117, 528–529 (1953).

    ADS  Google Scholar 

  2. Bada, J. L., Lazcano, A., Prebiotic Soup — Revisiting the Miller Experiment, Science 300, 745–746 (2003).

    Article  Google Scholar 

  3. Nisbet, E. G., Sleep, N. H., The Habitat and Nature of Early Life, Nature 409, 1083–1091 (2001).

    Article  ADS  Google Scholar 

  4. Lazcano, A., Miller, S. L., How Long Did it Take for Life to Begin and Evolve to Cyanobacteria?, J. Mol. Evol. 39, 6, 546–554 (1994).

    Article  Google Scholar 

  5. Cohen, B. A., Swindle, T. D., Kring, D. A., Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages, Science 290, 1754–1756 (2000).

    Article  ADS  Google Scholar 

  6. Ryder, G., Mass Flux in the Ancient Earth-Moon System and benign implications for the Origin of Life on Earth, J. Geophys. Res. 107 (E4) Art No. 5002 (2002)

    Google Scholar 

  7. Ryder, G., Bombardment of the Hadean Earth: Wholesome or Deleterious?, Astrobiology 3, 3–6 (2003).

    Article  ADS  MATH  Google Scholar 

  8. Maher, K. A., Stevenson, D. J., Impact Frustration of the Origin of Life, Nature 331, 612–614 (1988)

    Article  ADS  Google Scholar 

  9. Wilde, S. A., Valley, J. W., Peck, W. H., Graham, C. M., Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr ago, Nature 409, 175–178 (2001).

    Article  ADS  Google Scholar 

  10. Mojzsis, S. J., Arrhenius, G. McKeegan, K. D., Harrison, T. M., Nutman, A. P., Friend, C. R. L., Evidence for Life on Earth Before 3,800 million Years Ago, Nature 384, 55–59 (1996).

    Article  ADS  Google Scholar 

  11. Fedo, C. M., Whitehouse, M. J., Metasomatic Origin of Quartz-Pyroxene Rock, Akilia, Greenland, and Implications for Earth’s Earliest Life, Science 296, 1448–1452 (2002).

    Article  ADS  Google Scholar 

  12. Van Zuilen, M. A., Lepland, A., Arrhenius, G., Reassessing the Evidence for the Earliest Traces of Life, Nature 418, 627–630 (2002).

    ADS  Google Scholar 

  13. Schopf, J. W., Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life, Science 260, 640–646 (1993).

    ADS  Google Scholar 

  14. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., Czaja, A. D., Laser Raman Imagery of Earth’s Earliest Fossils, Nature 416, 73–76 (2002).

    Article  ADS  Google Scholar 

  15. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. N., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., Grassineau, N. V., Questioning the Evidence for Earth’s Oldest Fossils, 2002, Nature 416, 76–81 (2002).

    Article  ADS  Google Scholar 

  16. Brasier, M., Green, O., Lindsay, J., Steele, A., Earth’s Oldest (<3.5 Ga) Fossils and the ‘Early Eden Hypothesis’: Questioning the Evidence, Origins Life Evol. Biosphere 34, 257–269 (2004).

    Article  ADS  Google Scholar 

  17. Bada, J. L., Lazcano, A., Some Like it Hot, But Not the First Biomolecules, Science 296, 1982–1983 (2002).

    Article  Google Scholar 

  18. Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J. R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaje, H., Lazcano, A., Owen, T., Robert, F., Astrophysical and Astrochemical Insights into the Origin of Life, Rep. Prog. Phys. 65, 1427–1487 (2002).

    Article  ADS  Google Scholar 

  19. Kasting, J. F., Pavlov, A. A., Siefert, J. L., A Coupled Ecosystem-Climate Model for Predicting the Methane Concentration in the Archean Atmosphere, Origins Life Evol. Biosphere 31, 271–285 (2001).

    Article  ADS  Google Scholar 

  20. Schlesinger, G, Miller, S. L., Prebiotic Synthesis in Atmospheres Containing CH4, CO and CO2. I. Amino Acids, J. Mol. Evol. 19, 376–382 (1983).

    Google Scholar 

  21. Miller, S. L., The Mechanism of Synthesis of Amino Acids by Electric Discharges, Biochim. Biophys. Acta 23, 480–489 (1957).

    Article  Google Scholar 

  22. Miller, S. L., Schlesinger, G., Carbon and Energy Yields in Prebiotic Syntheses Using Atmospheres Containing CH4, CO and CO2, Origins Life 14, 83–90 (1984).

    Article  ADS  Google Scholar 

  23. Wächtershäuser, G., Groundworks for an Evolutionary Biochemistry: The Iron-Sulfur World, Prog. Biophys. Molec. Biochem. 58, 85–201 (1992).

    Google Scholar 

  24. Wächtershäuser, G., Life As We Don’t Know It, Science 289, 1307–1808 (2000).

    Google Scholar 

  25. Huber, C, Wächtershäuser, G., Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions, Science 276, 245–247 (1997).

    Article  Google Scholar 

  26. Cody, G. D., Boctor, N. Z., Hazen, R. M., Brandes, J. A., Morowitz, H. J., Yoder, H. S., Jr., Geochemical Roots of Autotrophic Carbon Fixation: Hydrothermal Experiments in the System Citric Acid, H2O-(±FeS)-(±NiS), Geochim. Cosmochim. Acta 65, 3557–3576 (2001).

    ADS  Google Scholar 

  27. Orgel, L. E., Self-Organizing Biochemical Cycles, Proc. Natl. Acad. Sci. USA 97, 12503–12507 (2000).

    Article  ADS  Google Scholar 

  28. Miller, S. L., Bada, J. L., Submarine Hot Springs and the Origin of Life, Nature 334, 609–611 (1988).

    ADS  Google Scholar 

  29. Miller, S. L., Lazcano, A., The Origin of Life — Did It Occur at High Temperatures?, J. Mol. Evol. 41, 689–692 (1995).

    Article  Google Scholar 

  30. Levy, M., Miller, S. L., The Stability of RNA Bases: Implications for the Origin of Life, Proc. Natl. Acad. Sci USA 95, 7933–7938 (1998).

    ADS  Google Scholar 

  31. Bada, J. L., Bigham, C., Miller, S. L., Impact Melting of Frozen Oceans on the Early Earth: Implications for the Origin of Life, Proc. Natl. Acad. Sci. USA 91, 1248–1250 (1994).

    ADS  Google Scholar 

  32. Moulton, V., Gardner, P. P., Pointon, R. F., Creamer, L. K., Jameson, G. B., Penny, D., RNA Folding Argues Against a Hot-Start Origin of Life, J. Mol. Evol. 51, 416–421 (2000).

    Google Scholar 

  33. Wieland, T, Schäfer, W., Bokelmann, E., Über eine bequeme Darstellungsweise von Acylthiophenolen und ihre Verwendung zu Amid-und Peptid-Synthesen, Liebigs Ann. Chem. 573, 99–104 (1951).

    Google Scholar 

  34. De Duve, C. (1991), Blueprint for A Cell, Neil Patterson Publishers, Burlington, NC.

    Google Scholar 

  35. Ferris, J. P., Hagan, W. J., Jr., HCN and Chemical Evolution: The Possible Role of Cyano Compounds in Prebiotic Synthesis, Tetrahedron 40, 1093–1120 (1984).

    Article  Google Scholar 

  36. Oró, J., Synthesis of Adenine from Ammonium Cyanide, Biochem. Biophys. Res. Commun. 2, 407–412 (1960).

    Google Scholar 

  37. Oró, J., Kimball, A. P., Synthesis of purines under possible primitive Earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–27 (1961).

    Google Scholar 

  38. Levy, M., Miller, S. L., Oró, J., Production of Guanine from NH4CN Polymerization, J. Mol. Evol. 49, 165–168 (1999).

    Article  Google Scholar 

  39. Miyakawa, S., Cleaves, H. J., Miller, S. L., The Cold Origin of Life: A. Implications Based on the Hydrolytic Stabilities of Hydrogen Cyanide and Formamide, Origins Life Evol. Biosphere 32, 195–208 (2003).

    ADS  Google Scholar 

  40. Miyakawa, S., Cleaves, H. J., Miller, S. L., The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced from Frozen Ammonium Cyanide Solutions, Origins Life Evol. Biosphere 32, 209–218 (2003).

    ADS  Google Scholar 

  41. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., Moore, C., Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in the Murchison Meteorite, Nature 228, 923–926 (1970).

    Article  ADS  Google Scholar 

  42. Cronin, J. R. and Chang, S.: 1993, Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorites, in J. M. Greenberg, C. X. Mendoza-Gomez & V. Pirronello (eds.), The Chemistry of Life’s Origin, Kluwer Academic Publishers, The Netherlands, pp. 209–258.

    Google Scholar 

  43. Stoks, P. G., Schwartz, A. W., Uracil in Carbonaceous Chondrites, Nature 282, 709–710 (1979).

    Article  ADS  Google Scholar 

  44. Stoks, P. G., Schwartz, A. W., Nitrogen-Heterocyclic Compounds in Meteorites: Significance and Mechanisms of Formation, Geochim. Cosmochim. Acta 45, 563–569 (1981).

    Article  ADS  Google Scholar 

  45. Shimoyama, A., Hagishita, S., Harada, K., Search for Nucleic Acid Bases in Carbonaceous Chondrites from Antarctica, Geochemical Journal 24, 343–348 (1990).

    Google Scholar 

  46. Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., Garrel, L., Carbonaceous Meteorites as a Source of Sugar-Related Organic Compounds for the Early Earth, Nature 414, 879–883 (2001).

    Article  ADS  Google Scholar 

  47. Botta, O., Bada, J. L., Extraterrestrial Organic Compounds in Meteorites, Surv. Geophys. 23, 411–467 (2002).

    Article  ADS  Google Scholar 

  48. Messenger, S., Amari, S., Gao, X., Walker, R. M., Clemett, S. J., Chillier, X. D. F., Zare, R. N., Lewis, R. S., Indigenous Polycyclic Aromatic Hydrocarbons in Circumstellar Graphite Grains from Primitive Meteorites, Astrophys. J. 502, 284–295 (1998).

    Article  ADS  Google Scholar 

  49. Lerner, N. R., Peterson, E., Chang, S., The Strecker Synthesis as a Source of Amino Acids in Carbonaceous Chondrites: Deuterium Retention During Synthesis, Geochim. Cosmochim. Acta 57, 4713–4723 (1993).

    Article  ADS  Google Scholar 

  50. Ehrenfreund, P., Glavin, D. P., Botta, O., Cooper, G., Bada, J. L., Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrties, Proc. Natl. Acad. Sci. USA 98, 2138–2141 (2001).

    Article  ADS  Google Scholar 

  51. Botta, O., Glavin, D. P., Kminek, G., Bada, J. L., Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites, Origins Life Evol. Biosphere 32, 143–163 (2002).

    Article  ADS  Google Scholar 

  52. Love, S. G., Brownlee, D. E., A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust, Science 262, 550–553 (1993).

    ADS  Google Scholar 

  53. Chyba, C. F., Sagan, C., Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 255, 125–132 (1992).

    ADS  Google Scholar 

  54. Clemett, S. J., Maechling, C. R., Zare, R. N., Swan, P. D., Walker, R. M., Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles, Science 262, 721–725 (1993).

    ADS  Google Scholar 

  55. Glavin, D. P. Survival of Prebiotic Organic Compounds During Exogenous Delivery. Implications for the Origin of Life on Earth and Potentially on Mars. Ph.D. Thesis, University of California, San Diego, 2001.

    Google Scholar 

  56. Glavin, D. P. and Bada, J. L, Survival of Amino Acids in Micrometeorites During Atmospheric Entry, Astrobiology 1, 259–269 (2001).

    Article  ADS  Google Scholar 

  57. Chyba, C. F., Thomas, P. J., Brookshaw, L. and Sagan, C. Cometary Delivery of Organic Molecules to the Early Earth. Science 249, 366–373 (1990).

    ADS  Google Scholar 

  58. Zhao, M. and Bada, J. L. Extraterrestrial Amino Acids in Cretaceous/Tertiary Boundary Sediments at Stevns Klint, Denmark. Nature 339, 463–465 (1989).

    Article  ADS  Google Scholar 

  59. Pierazzo, E. and Chyba, C. F. Amino Acid Survival in Large Cometary Impacts. Meteorit. Planet. Sci. 34, 909–918 (1999).

    ADS  Google Scholar 

  60. Bada, J. L., Extraterrestrial handedness?, Science 275, 942–943 (1997).

    Article  Google Scholar 

  61. Feringa, B. L., van Delden, R. A., Absolute Symmetric Synthesis: The Origin, Control, and Amplification of Chirality, Angew. Chem. Int. Ed. 38, 3418–3438 (1999).

    Article  Google Scholar 

  62. Podlech, J., Origin of Organic Molecules and Biomolecular Homochirality, Cell. Mol. Life. Sci. 58, 44–60 (2001).

    Google Scholar 

  63. Kondepudi, D. K., Asakura, K., Chiral Autocatalysis, Spontaneous symmetry Breaking, and Stochastic Behavior, Acc. Chem. Res. 34, 946–954 (2001).

    Article  Google Scholar 

  64. Sato, I., Urabe, H., Ishiguro, S., Shibata, T., Soai, K., Amplification of Chirality from Extremely Low to Greater than 99.5% ee by Asymmetric autocatalysis, Angew. Chem. Int. Ed. 42, 315–317 (2003).

    Google Scholar 

  65. Soai, K., Sato, I., Shibata, T., Monyia, S., Hayashi, M., Matsueda, Y., Imamura, H., Hayase, T., Morioka, H., Tabira, H., Yamamoto, J., Kowata, Asymmetric Synthesis of Pyrimidyl Alkanol without Adding Chiral Substances by the Addition of Diisopropylzinc to Pyrimidine-5-carbaldehyde in Conjunction with Asymmetric Autocatalysis, Tetrahedr. Asymm. 14, 185–188 (2003).

    Google Scholar 

  66. Sato, I., Urabe, H., Ishii, S., Tanji, S., Soai, K., Asymmetric Synthesis with a Chiral Catalyst Generated from Asymmetric Autocatalysis, Org. Lett. 3, 3851–3854 (2001).

    Article  Google Scholar 

  67. Cronin, J. R., Pizzarello, S., Enantiomeric Excesses in Meteoritic Amino Acids, Science 275, 951–955 (1997).

    Article  ADS  Google Scholar 

  68. Pizzarello, S., Zolensky, M., Turk, K. A., Nonracemic Isovaline in the Murchison Meteorite: Chiral Distribution and Mineral Association, Geochim. Cosmochim. Acta 67, 1589–1595 (2003).

    Article  ADS  Google Scholar 

  69. Engel, M. H., Macko, S. A., Isotopic Evidence for Extraterrestrial Non-Racemic Amino Acids in the Murchison Meteorite, Nature 389, 265–268 (1997).

    Article  ADS  Google Scholar 

  70. Pizzarello, S., Cronin, J. R., Non-Racemic Amino Acids in the Murray and Murchison Meteorites, Geochim. Cosmochim. Acta 64, 329–338 (2000).

    Article  ADS  Google Scholar 

  71. Bonner, W. A., Rubenstein, E., Supernovae, Neutron Stars and Biomolecular Chirality, BioSystems 20, 99–111 (1987).

    Article  Google Scholar 

  72. Pizzarello, S., Weber, A. L., Prebiotic Amino Acids as Asymmetric Catalysts, Science 303, 1151 (2004).

    Article  Google Scholar 

  73. Bolli, M., Micura, R., Eschenmoser, A., Pyranosyl-RNA: Chiroselective Self-assembly of Base Sequences by Ligative Oligomerization of Tetranucleotide-2′,3′-cyclophosphates (with a Commentary Concerning the Origin of Biomolecular Homochirality), Chem. Biol. 4, 309–320 (1997).

    Article  Google Scholar 

  74. Huang, W., Ferris, J. P., Synthesis of 35-40-mers of RNA Oligomers from Unblocked Monomers. A Simple Approach to the RNA World, Chem. Comm. 1458–1459 (2003).

    Google Scholar 

  75. Miyakawa, S., Ferris, J. P., Sequence-and Regioselectivity in the Montmorillonite-Catalyzed Synthesis of RNA, J. Am. Chem. Soc. 125, 8202–8208.

    Google Scholar 

  76. Ferris, J. P., Montmorillonite Catalysis of 30-50-mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World, Origins Life Evol. Biosphere 32, 311–332 (2002).

    Article  ADS  Google Scholar 

  77. Orgel, L. E., The Origin of Life — a Review of Facts and Speculations, Trends Biochem. Sci. 23, 491–495 (1998).

    Article  Google Scholar 

  78. Müller, D., Pitsch, S., Kittaka, A., Wagner, E., Wintner, C. E., Eschenmoser, A., Aldomerisierung von Glycoaldehy-phophaten und (in Gegenwart von Formaldehyd) Racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte, Helv. Chim. Acta 73, 1410–1468 (1990)

    Google Scholar 

  79. Unrau, P. J., Bartel, D. P. RNA-Catalyzed Nucleotide Synthesis, Nature 395, 260–263 (1998)

    ADS  Google Scholar 

  80. Schwartz, A. W., Prebiotic Phosphorylation — Nucleotide Synthesis with Apatite, Biochim. Biophys. Acta 281, 477–480 (1972).

    Google Scholar 

  81. Lohrmann, R., Orgel, L. E., Prebiotic Synthesis: Phosphorylation in Aqueous Solution, Science 161, 64–66 (1968).

    ADS  Google Scholar 

  82. Schwartz, A. W., van der Veen, M., Bisseling, T., Chittenden, G. J. F., Prebiotic Nucleotide Synthesis — Demonstration of a Geologically Plausible Pathway, Origins Life 6, 163–168 (1975).

    Article  ADS  Google Scholar 

  83. Eschenmoser, A. Towards a Chemical Etiology of Nucleic Acid Structure, Origins Life Evol. Biosphere 27, 535–553 (1997).

    Article  ADS  Google Scholar 

  84. Beier, M., Reck, T., Wagner, R., Krishnamurthy, R., Eschenmoser, A., Chemical Etiology of Nucleic Acid Structure: Comparing Pentopyranosyl-(2′→4′) oligonucleotides with RNA, Science 283, 699–703 (1999).

    Article  ADS  Google Scholar 

  85. Schöning, K.-U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R., Eschenmoser, A., Chemical Etiology of Nucleic Acid Structure: The α-threofuranosyl-(3′→2′) oligonucleotide system, Science 290, 1347–1351 (2000).

    ADS  Google Scholar 

  86. Egholm, M., Buchardt, O., Nielsen, P. E., Berg, R. H., Peptide Nucleic Acid (PNA). Oligonucleotide Analogues with an Achiral Peptide Backbone, J. Am. Chem. Soc. 114, 1895–1897 (1992).

    Google Scholar 

  87. Schmidt, J. G., Nielsen, P. E., Orgel, L. E., Information Transfer from Peptide Nucleic Acid to RNA by Template-Directed Syntheses, Nucleic Acids Res. 25, 4797–4802 (1997).

    Google Scholar 

  88. Nelson, K. E., Levy, M., Miller, S. L., Peptide Nucleic Acids Rather Than RNA May Have Been the First Genetic Molecules, Proc. Natl. Acad. Sci. USA 97, 3868–3871 (2000).

    ADS  Google Scholar 

  89. Schmidt, J. G., Nielsen, P. E., Orgel, L. E., Enantiomeric Cross-Inhibition in the Synthesis of Oligonucleotides on a Nonchiral Template, J. Am. Chem. Soc. 119, 1494–1495 (1997).

    Article  Google Scholar 

  90. Buchanan J. M. (1965), Chairman’s remarks. The Origin of Prebiological Systems and of Their Molecular Matrices (Fox SW, ed.). Academic Press, New York, pp. 101–104.

    Google Scholar 

  91. Haldane J. B. S. (1965), Data needed for a blueprint of the first organism. The Origin of Prebiological Systems and of Their Molecular Matrices (Fox SW, ed.). Academic Press, New York, pp. 11–18.

    Google Scholar 

  92. Crick, F. H. C., The Origin of the Genetic Code, J. Mol. Biol. 38, 367–379 (1967).

    Google Scholar 

  93. Orgel, L. E., Evolution of the Genetic Apparatus, J. Mol. Biol. 38, 381–393 (1967).

    Google Scholar 

  94. Joyce, G. F., The Rise and Fall of the RNA World, The New Biologist 3, 399–407 (1991).

    Google Scholar 

  95. Gilbert, W., The RNA World, Nature 319, 618 (1986).

    Article  ADS  Google Scholar 

  96. Gesteland, R. F. & Atkins, J. F. (eds.), The RNA World. New York: Cold Spring Harbor Press, 1993.

    Google Scholar 

  97. Yusupov, M. M., Yusupova, G. Zh., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. D., Noller, H. F., Crystal Structure of the Ribosome at 5.5 Å Resolution, Science 292, 883–896 (2001).

    Article  ADS  Google Scholar 

  98. Moore, P. B. & Steitz, T. A., The Involvement of RNA in Ribose Function, Nature 418, 229–235 (2002).

    ADS  Google Scholar 

  99. Scott, W. G. & Klug, A., Ribozymes: Structure and Mechanism in RNA Catalysis, Trends Biochem. Sci. 21, 220–224 (1996).

    Article  Google Scholar 

  100. Lee, N., Bessho, Y., Wei, K., Szostak, J. W., Suga, H., Ribozyme-Catalyzed tRNA Aminoacylation, Nature Struct. Biol. 7, 28–33 (2000).

    Google Scholar 

  101. Tarasow, T. M, Tarasow, S. L., Eaton, B. E., RNA-Catalyzed Carbon-Carbon Bond Formation, Nature 389, 54–57 (1997).

    Article  ADS  Google Scholar 

  102. Roth, A. & Breaker, R. R., An Amino Acid as a Cofactor for a Catalytic Polynucleotide, Proc. Natl. Acad. Sci. USA 95, 6027–6032 (1998).

    Article  ADS  Google Scholar 

  103. Schimmel, P. & Kelley, S. O., Exiting an RNA World, Nature Struct. Biol. 7, 5–7 (2000).

    Article  Google Scholar 

  104. Kumar, R. K. & Yarus, M., RNA-Catalyzed Amino Acid Activation, Biochemistry 40, 6998–7004 (2001).

    Google Scholar 

  105. Zhang, B. & Cech, T. R., Peptide Bond Formation by in vitro Selected Ribozymes, Nature 390, 96–100 (1997).

    ADS  Google Scholar 

  106. Schimmel, P., Giegé, R., Moras, D., Yokoyama, S., An Operational RNA Code for Amino Acids and Possible Relationship to the Genetic Code, Proc. Natl. Acad. Sci USA 90, 8763–8768 (1993).

    ADS  Google Scholar 

  107. Nahvi, A., Sudarsan, N., Ebert, M. S., Zou, X., Brown, K. L., Breaker, R. R., Genetic Control by a Metabolite Binding mRNA, Chem. Biol. 9, 1043–1049 (2002).

    Article  Google Scholar 

  108. Woese, C., The Universal Ancestor, Proc. Natl. Acad. Sci. USA 95, 6854–6859 (1998).

    ADS  Google Scholar 

  109. Forterre, P., The Origin of DNA Genomes and DNA Replication Proteins, Curr. Opinion Microbiol. 5, 525–532 (2002).

    Google Scholar 

  110. Dworkin, J. P., Lazcano, A., Miller, S. L., The Roads to and from the RNA world, J. Theor. Bio. 222, 127–134 (2003).

    Google Scholar 

  111. Szostak, J. W., Bartel, D. P., Luisi, P. L., Synthesizing Life, Nature 409, 387–390 (2001).

    Article  ADS  Google Scholar 

  112. Monnard, P.-A., Deamer, D., Membrane Self-Assembly Processes: Steps Toward the First Cellular Life, Anat. Rec. 268, 196–207 (2002).

    Article  Google Scholar 

  113. Deamer, D. W., Boundary Structures Are Formed by Organic Components of the Murchison Carbonaceous Chondrite, Nature 317, 792–794 (1985).

    Article  ADS  Google Scholar 

  114. Mautner, M. N., Leonard, R. L., Deamer, D. W., Meteorite Organics in Planetary Environments: Hydrothermal Release, Surface Activity, and Microbial Utilization, Planet. Space Sci. 43, 139–147 (1995).

    Article  ADS  Google Scholar 

  115. Apel, C. L., Mautner, M. N., Deamer, D. W., Self-Assembled Vesicles of Monocarboxylic acids and Alcohols: Conditions for Stability and for Encapsulation of Biopolymers, Biochim. Biophys. Acta 1559, 1–9 (2002).

    Google Scholar 

  116. Dworkin J. P., Deamer D. W., Sandford S. A., Allamandola L. J., Self-assembling Amphiphilic Molecules: Synthesis in Simulated Interstellar/Precometary Ices, Proc. Natl. Acad. Sci. USA 98, 815–819 (2001).

    Article  ADS  Google Scholar 

  117. Walde, P., Goto, A., Monnard, P.-A., Wessicken, M., Luisi, P. L., Oparin’s Reaction revisited: Enzymatic Synthesis of Poly(adenylic acid) in Micelles and Self-Reproducing Vesicles, J. Am. Chem. Soc. 116, 7541–7547 (1994).

    Google Scholar 

  118. Woese, C. R., Bacterial Evolution, Microbiol. Rev. 51, 221–271 (1987).

    Google Scholar 

  119. Brown, J. R., Ancient Horizontal Gene Transfer, Nature Rev: Genetics 4, 121–132 (2003).

    Google Scholar 

  120. Gogarten, J. P., Gene Transfer: Gene Swapping Craze Reaches Eukaryotes, Curr. Biol. 13, R53–R54 (2003).

    Article  Google Scholar 

  121. Gogarten, J. P., Doolittle, W. F., Lawrence, J. G., Prokaryotic Evolution in Light of Gene Transfer, Mol. Biol. Evol. 19, 226–2238 (2002).

    Google Scholar 

  122. Margulis, L., (1970), Origin of Eucaryotic Cells, Yale Univ. Press, New Haven, CT.

    Google Scholar 

  123. Doolittle, W. F., You Are What You Eat: A Gene Transfer Ratchet Could Account for Bacterial Genes in Eukaryotic Nuclear Genomes, Trends Genet. 14, 307–311 (1998).

    Google Scholar 

  124. Martin, W., Mosaic Bacterial Chromosomes: A Challenge En Route to a Tree of Genomes, BioEssays 21, 99–104 (1999).

    Article  Google Scholar 

  125. Doolittle, W. F., Phylogenetic Classification and the Universal Tree, Science 284, 2124–2128 (1999).

    Article  Google Scholar 

  126. Woese, C. R., On the Evolution of Cells, Proc. Natl. Acad. Sci. USA 99, 8742–8747 (2002).

    Article  ADS  Google Scholar 

  127. Daubin, V., Moran, N. A., Ochman, H., Phylogenetics and the Cohesion of Bacterial Genomes, Science 301, 829–832 (2003).

    Article  ADS  Google Scholar 

  128. Xu, Y., Glansdorff, N, Was Our Ancestor a Hyperthermophilic Prokaryote?, Comp. Biochem. Phys. A 133, 677–688 (2002).

    Google Scholar 

  129. Forterre, P., Philippe, H., Where Is the Root of the Universal Tree of Life?, BioEssays 21, 871–879 (1999).

    Article  Google Scholar 

  130. Forterre, P., Thermoreduction, a Hypothesis for the Origin of Prokaryotes, CR Acad. Sci. Paris 318, 415–422 (1995).

    Google Scholar 

  131. Galtier, N., Tourasse, N., Gouy, M., A Nonhyperthermophilic Common Ancestor to Extant Life Forms, Science 283, 220–221 (1999).

    Article  Google Scholar 

  132. Brochier, C., Philippe, H., A Non-Hyperthermophilic Ancestor for Bacteria, Nature 417, 244 (2002).

    Article  ADS  Google Scholar 

  133. Rothschild, L. J., Mancinelli, R. L., Life in Extreme Environments, Nature 409, 1092–1101 (2001).

    Article  ADS  Google Scholar 

  134. Doolittle, W. F., The Nature of the Universal Ancestor and the Evolution of the Proteome, Curr. Opinion Struct. Biol. 10, 355–358 (2000).

    Article  Google Scholar 

  135. Line, M. A., The Enigma of the Origin of Life and its Timing, Microbiol. 148, 21–27 (2002).

    Google Scholar 

  136. Luisi, P. L., About Various Definitions of Life, Origins Life Evol. Biosphere 28, 613–622 (1998).

    Article  ADS  Google Scholar 

  137. Cleland, C. E., Chyba, C. F., Defining Life, Origins Life Evol. Biosphere 32, 387–393 (2002).

    Article  ADS  Google Scholar 

  138. Eschenmoser, A., Kisakürek, M. V., Chemistry and the Origin of Life, Helv. Chim. Acta 79, 1249–1259 (1996).

    Article  Google Scholar 

  139. Hanczyc, M. M., Kujikawa, S. M. Szostak, J. W., Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division, Science 302, 618–622 (2003).

    Article  ADS  Google Scholar 

  140. Kashefi, K., Lovley, D. R., Extending the Upper Temperature Limit for Life, Science 301, 934 (2003).

    Article  Google Scholar 

  141. Kminek, G., Bada, J. L., Botta, O., Glavin, D., Grunthaner, F., MOD: An Organic Detector for Future Robotic Exploration of Mars, Planet. Space Sci. 48, 1087–1091 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Botta, O. (2004). The Chemistry of the Origin of Life. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_15

Download citation

Publish with us

Policies and ethics