Skip to main content

Early Life on Earth: The Ancient Fossil Record

  • Chapter
Astrobiology: Future Perspectives

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

The evidence for early life and its initial evolution on Earth is linked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modern standards: hot (50–80°C), volcanically and hydrothermally active, anoxic, high UV flux, and a high flux of extraterrestrial impacts. Habitats for life were more limited until continent-building processes resulted in the formation of stable cratons with wide, shallow, continental platforms in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the existence of organisms fractionating carbon in ∼3.8 Ga rocks from the Isua greenstone belt in Greenland are tenuous. Well-preserved microfossils and microbial mats (in the form of tabular and domical stromatolites) occur in 3.5–3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Africa) and Pilbara (Australia) greenstone belts. They document life forms that show a relatively advanced level of evolution. Microfossil morphology includes filamentous, coccoid, rod and vibroid shapes. Colonial microorganisms formed biofilms and microbial mats at the surfaces of volcaniclastic and chemical sediments, some of which created (small) macroscopic microbialites such as stromatolites. Anoxygenic photosynthesis may already have developed. Carbon, nitrogen and sulphur isotopes ratios are in the range of those for organisms with anaerobic metabolisms, such as methanogenesis, sulphate reduction and photosynthesis. Life was apparently distributed widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in the early Archaean was restricted owing to the limited amount of energy that could be produced by anaerobic metabolisms. Microfossils resembling oxygenic photosynthesisers, such as cyanobacteria, probably first occurred in the later part of the Mid Archaean (∼2.9 Ga), concurrent with the tectonic development of suitable shallow shelf environments. The development of an oxygenic metabolism allowed a considerable increase in biomass and increased interaction with the geological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appel, P.W.U., Moorbath, S. (1999). Exploring Earth’s oldest geological record in Greenland. EOS, 80, 257–264.

    Article  ADS  Google Scholar 

  • Appel, P.W.U., Fedo, C.M., Moorbath, S., Myer, J.S. (1998). Recognizable primary volcanic and sedimentary features in a low-strain domain of the highly deformed, oldest known (∼3.7-3.8 Gyr) greenstone belt, Isua, West Greenland. Terra Nova, 10, 57–62.

    Article  Google Scholar 

  • Appel, P.W.U., Moorbath, S., Myers, J.S. (2003). Isuasphaera isua (Pflug) revisited. Precambrian Res, 126, 309–312.

    Article  Google Scholar 

  • Arndt, N.T. (1994). Archean komatiites, in Archean crustal evolution, ed. K.C. Condie, p. 11–44, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Awramik, S.M., Sprinkle, J. (1999). Proterozoic stromatolites: the first marine evolutionary biota. Historical Biology, 13, 241–253

    Article  Google Scholar 

  • Beaumont, V., Robert, F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmospheric chemistry? Precambrian Res., 96, 63–82.

    Article  Google Scholar 

  • Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., van Kranendonk, M., Lindsay, J.F., Steele, A., Grassineau, N. (2002). Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76–81.

    Article  ADS  Google Scholar 

  • Bridgewater, D., Allaart, J.H., Schopf, J.W., Kelin, C., Walter, E.S., Strother, A.H., Gorman, B.E. (1981). Microfossil-like objects from the Archaean of Greenland: a cautionary note. Nature, 289, 51–53.

    Article  ADS  Google Scholar 

  • Brocks J.J., Logan G.A., Buick R., Summons R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036.

    Article  Google Scholar 

  • Brocks, J.J. Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E., Buick, R. (2003). Release of bound aromatic hydrocarbons from late Archean and Mesoarchean kerogens via hydropyrolysis. Geochim. Cosmochim. Acta., 67, 1521–1530.

    Article  ADS  Google Scholar 

  • Buick, R., (1990). Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios, 5, 441–459.

    Article  Google Scholar 

  • Byerly G. R., Walsh, M.M., Lowe, D.L. (1986). Stromatolites from the 3300–3500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319, 489–491.

    Article  ADS  Google Scholar 

  • Cady, S.L., Farmer, J.D. (1996). Fossilization processes in siliceous thermal springs: trends in preservation along the thermal gradient. In: Evolution of hydrothermal ecosystems on Earth (and Mars), ed. G.R. Bock and J.A. Goodie, Ciba Symposium 202, John Wiley, Chichester, pp 150–173.

    Google Scholar 

  • Cockell, C.S. (2001). A photobiological hoistory of Earth. In: Ecosystems, Evolution and Ultraviolet Radiation, eds. C.S. Cockell and A.R. Blaustein, Springer, Berlin, pp 1–35.

    Google Scholar 

  • de Ronde, C.E.J., Ebbesen, T.W. (1996). 3.2 billion years of organic compound formation near sea-floor hot springs. Geology, 24, 791–794.

    Article  ADS  Google Scholar 

  • de Wit, M.J., Hart, R.A. (1993). Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos, 30, 309–336.

    Article  ADS  Google Scholar 

  • Des Marais, D.J. (2000). When did photosynthesis emerge on Earth? Science, 289, 1703–1705.

    ADS  Google Scholar 

  • Dunlop, J.S.R., Muir, M.D., Milne, V.A., Groves, D.I. (1978). A new microfossil assemblage from the archeaen of Western Australia. Nature, 274, 676–678.

    Article  ADS  Google Scholar 

  • Farquahr, J., Bao, H., Thiessen, M. (2000). Atmospheric influence of Earth’s earliest sufur cycle. Science, 289, 756–758.

    Article  ADS  Google Scholar 

  • Fedo, C.M. (2000). Setting and origin for problematic rocks from the > 3.7 Ga Isua Greenstone Belt, southern west Greenland: Earth’s oldest coarse sediments. Precambrian Res., 101, 69–78.

    Article  Google Scholar 

  • Fedo, C.M., Whitehouse, M.J. (2002). Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science, 296, 1448–1452.

    Article  ADS  Google Scholar 

  • Forterre, P., Confalonieri, F., Charbonnier, F, Duguet, M. (1995). Speculations on the origins of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive. Origins Life Evol. Biosphere, 25, 235–249.

    Article  ADS  Google Scholar 

  • Gerdes, G., Krumbein, W.E. (1987). Biolaminated deposits. In, Lecture Notes in Earth Sciences (S. Bhattacharji et al.). Springer, Berlin.

    Google Scholar 

  • Grotzinger, J.P. (1994). Trends in Precambrian carbonate sediments and their implication for understanding evolution. In Early life on Earth, ed. S. Bengtson, Nobel Symp. 84, Columbia Univ. Press, N.Y., pp.245–258.

    Google Scholar 

  • Grotzinger, J.P., Kasting, J.F. (1993). New constraints on Precambrian ocean composition. J. Geol., 101, 235–243.

    Article  ADS  Google Scholar 

  • Han, T.-M., Runnegar, B. (1992). Megascopic eukaryotic algae from the 2.1-billion-year-olds Negaunee Iron-Formation, Michigan. Science, 257, 232–235.

    Article  ADS  Google Scholar 

  • Hayes, J.M., Kaplan I.R., Wedeking K.W. (1983). Precambrian organic chemistry, preservation of the record. In: Earth’s earliest biosphere, ed. J.W. Schopf, p. 93–134, Princeton Univ. Press.

    Google Scholar 

  • Hofmann, H. J., M. Masson, (1994). Archean stromatolites from Abitibi greenstone belt, Quebec, Canada. Geol. Soc. Am. Bull., 106, p. 424–429.

    Article  Google Scholar 

  • Hofmann, H.J., Grey, K.,, A.H., Thorpe, R.I. (1999). Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull., 111, 1256–1262.

    Article  Google Scholar 

  • Holland, H. D. (1984). The chemical evolution of the atmosphere and oceans. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Kakegawa, T. (2001). Isotopic signatures of early life in the Archean oceans: influence from submarine hydrothermal activities. In: Geochemistry and the Origin of Life, Eds. S. Nakashsima, S. Maruyama, A. Brack, and B.F. Windley, pp. 237–249., Universal Acad. Press, Tokyo

    Google Scholar 

  • Kasting, J.F. (1993). Earth’s early atmosphere. Science, 259, 920–926

    Article  ADS  Google Scholar 

  • Kempe, S. Degens, E.T. (1985). An early soda ocean? Chem. Geol., 5, 95–108.

    Article  Google Scholar 

  • Kirschvink, J.L. Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, l.N., Steinberge, R.E. (2000). Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA, 97, 1400–1495.

    Article  ADS  Google Scholar 

  • Knauth, L.P., Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull., 115, 566–580.

    Article  Google Scholar 

  • Krumbein, W.E. (1983) Stromatolites — the challenge of a term in space and time. Precambrian Res., 20, 493–531.

    Article  Google Scholar 

  • Kyte, F.T., Shukolyukov, A., Lugmaor, G.W., Lowe, D.R., Byerly, G.R. (2003). Early Archean spherule beds: Chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology, 31, 283–286.

    Article  ADS  Google Scholar 

  • Lepland, A., Arrhenius, G., Cornell, D. (2002) Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Res., 118, 221–241.

    Article  Google Scholar 

  • Lindsay, J.F., Brasier, M.D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Res., 114, 1–34.

    Article  Google Scholar 

  • Lowe, D.R. (1983). Restricted shallow water sedimentation of zearly Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Res., 19, 239–283.

    Article  Google Scholar 

  • Lowe, D. R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 287–390.

    Google Scholar 

  • Lowe, D.R., Byerly, G.R. (1986). Early Archean silicate spherules of probable impact origin, South Africa and Western Australia, Geology, 14, 83–86.

    Article  ADS  Google Scholar 

  • Lowe, D.R., Byerly, G.R. (1999). Geologic evolution of the Barberton greenstone belt, South Africa. Geol. Soc. Am. Spec. Paper 329.

    Google Scholar 

  • Lowe, D.R., Byerly, G.R., Kyte, F.T., Shukulyukov, A., Asaro, F., Krull, A. (2003). Spherule beds 3.47–3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology, 3, 7–48.

    Article  ADS  Google Scholar 

  • Maher, K.A., Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  ADS  Google Scholar 

  • Melosh, H.J., Vickery, A.M., Tonks, W.B. (1993) Impacts and the early environment and evolution of the terrestrial planets. In Protostars and planets III, Ed. E.H. Levt and J.L. Lunine. Univ. Arizona Press, Tucson, pp. 1339–1370.

    Google Scholar 

  • Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L. (1996). Evidence for life on Earth before 3800 millio-n years ago. Nature, 384, 55–59.

    Article  ADS  Google Scholar 

  • Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, 409, 178–181

    Article  ADS  Google Scholar 

  • Myers, J.S., (2003). Isua enigmas: illusive tectonic, sedimentary, volcanic, and organic features of the >3.8–>3.7 Ga Isua greenstone belt, Southwest Greenland. Geophys. Res. Abstracts, 5, 13823.

    Google Scholar 

  • Nijman, W., de Bruijne, K.H. Valkering, M. (1999). Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Res., 95, 247–274.

    Article  Google Scholar 

  • Noffke, N., Hazen, R., Nhieko, N. (2003). Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology, 31, 673–676.

    Article  ADS  Google Scholar 

  • Nutman, A.P. (1986). The early Archaean to Proterozoic history of the Isukasia area, southern West Greenland. Greenland Geol. Surv. Bull. 154, Copenhagen.

    Google Scholar 

  • Ohmoto, H. (1997). Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology, 24, 1135–1138.

    Article  ADS  Google Scholar 

  • Ohmoto, H. (1999). Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250-2750 Ma sandstones from the Pilbara craton, Australia: Comment. Geology, 27, 1151–1152.

    Article  ADS  Google Scholar 

  • Paris, I., Stanistreet, I.G., Hughes, M.J. (1985). Cherts of the Barberton greenstone belt interpreted as products of submarine exhalative activity. J. Geol., 93, 111–129.

    Article  ADS  Google Scholar 

  • Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., Freedman, R. (2001). Greenhouse warming by CH4 in the atmosphere of early earth. J. Geophys. Res., 105, 11981–11990.

    Article  ADS  Google Scholar 

  • Pflug, H.D. (1979). Archean fossil finds resembling yeasts. Geol. Palaeontol., 13, 1–8.

    MathSciNet  Google Scholar 

  • Pflug, H.D., (2001). Earliest organic evolution, Essay to the memory of Bartholomew Nagy. Precamb. Res., 106, 79–92.

    Article  Google Scholar 

  • Pflug, H.D., Jaeschke-Boyer, H. (1979). Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature, 280, 483–486.

    Article  ADS  Google Scholar 

  • Philippot, P., Foriel, J., Cauzid, J., Susini, J., Dumas, P., Somogyi, A., Khodia, H., Ménez, B., Fouquet, Y., Moreira, D., Garcia-Lopez, P. (2003). High resolution synchrotron-based imaging of sulphur oxidation states in individual microfossils and contemporary microbial filaments. Goldschmidt Conf. Abst. A379

    Google Scholar 

  • Pinti, D.L., Hashizume, K. (2001). 15N-depleted nitrogen in Early Archean kerogens: clues on ancient marine chemosynthetic-based ecosystems? Precambrian Res., 105, 85–88.

    Article  Google Scholar 

  • Pinti, D.L., Hashizume, K., Matsuda, J.-I. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: Clues on the chemical state of the Archean ocean and the deep biosphere. Geochim. Cosmochim. Acta, 65, 2301–2315.

    Article  ADS  Google Scholar 

  • Rasmussen, B. (2000). Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature, 405, 676–679.

    Article  ADS  Google Scholar 

  • Rasmussen, B., Buick, R., Holland, H.D. (1999). Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250-2750 Ma sandstones from the Pilbara Craton, Australia: reply. Geology, 27, 1152.

    Article  Google Scholar 

  • Robert, F. (1988). Carbon and oxygen isotope variations in Precambrian cherts. Geochim. Cosmochim. Acta, 52, 1473–1478.

    Article  ADS  Google Scholar 

  • Robbins, E.I. (1987). Appelella ferrifera, a possible new iron-coated microfossil in the Isua Iron-Formation, Southwestern Greenland. In: Precambrian Iron Formations eds., Appel, P.W.U., LaBerge, G.L., Theophrastes, Athens, pp. 141–154.

    Google Scholar 

  • Robbins, E.I., Iberall, A.S. (1991). Mineral remains of early life on Earth? On Mars? Geomicrobiol. J., 9, 51–66.

    Article  Google Scholar 

  • Roedder, E. (1981). Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature, 293, 159–162.

    Article  Google Scholar 

  • Rosing M.T. (1999). 13C depleted carbon microparticles in >3700 Ma seafloor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Article  ADS  Google Scholar 

  • Runnegar, B. (2002). Archean sulphates from Western Australia: implications for Early Archean atmosphere and chemistry. Goldschmidt Conf., Abstr. 3859.

    Google Scholar 

  • Ryder, G. (2002). Mass influx in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res., 107, 10.1029/2001JE001583.

    Google Scholar 

  • Ryder, G. (2003). Bombardment of the Hadean Earth: wholesome or deleterious. Astrobiology, 3, 3–6.

    Article  ADS  MATH  Google Scholar 

  • Rye, R., Kuo, P.H., Holland, H.D. (1995). Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature, 378, 603–605.

    Article  ADS  Google Scholar 

  • Sagan, C., Mullen, G. (1972). Earth and Mars: Evolution of atmospheres and surface temperatures. Science, 177, 52–56.

    Article  ADS  Google Scholar 

  • Sagan, C., Chyba, C. (1997). The early sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276, 1217–1221.

    Article  ADS  Google Scholar 

  • Schidlowski, M. (1988). A 3800 million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.

    Article  ADS  Google Scholar 

  • Schidlowski, M., (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res., 106, 117–134.

    Article  Google Scholar 

  • Schidlowski, M., Hayes, J.M., Kaplan, I.R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In: Earth’s earliest biosphere: its origin and evolution, ed. Schopf, J.W., Princeton Univ. Press, Princeton, pp. 149–186.

    Google Scholar 

  • Schopf, J.W. (1993). Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646.

    Article  ADS  Google Scholar 

  • Schopf, J.W., Walter, M.R. (1983). Archean microfossils: new evidence of ancient microbes, in Earth’s earliest biosphere, ed. J.W. Schopf, p.214–239, Princeton Univ. Press, Princeton.

    Google Scholar 

  • Schopf, J.W., Packer, B.M. (1987). Early Archean (3.3 billionto 3.5 billion-year-old) microfossils from Warawoona Group, Australia. Science, 237, 70–73.

    Article  ADS  Google Scholar 

  • Shen, Y., Buick, R., Canfield, D.E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81.

    Article  ADS  Google Scholar 

  • Sleep, N.H., Zahnle, K.J., Kasting, J.F., Morowitz, H.J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.

    Article  ADS  Google Scholar 

  • Sonett, C.P., Kvale, E.P., Zarkharian, A., Chan, M.A., Demko T.M. (1996). Late Proterozoic and Paleozoic tides, retreat of the Moon, and rotation of the Earth Science 273, pp. 100–104.

    Article  ADS  Google Scholar 

  • Strauss, H., Moore, T.B. (1992). Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: The Proterozoic Biosphere: A multidisciplinary study, Eds. J.W. Schopf, J.W., C. Klein, p.709–798, Camdridge Univ. Press, Cambridge.

    Google Scholar 

  • Summons R.E., Jahnke L.L., Hope J.M., Logan J.H. (1999). 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–7.

    Article  ADS  Google Scholar 

  • Touret, J. (2003). Remnants of early Archaean hydrothermal methane and brines in pillowbreccia from the Isua Greenstone Belt, West Greenland. Precambrian Res., 126, 219–233.

    Article  Google Scholar 

  • Ueno, Y., Maruyama, S., Isozaki, Y., Yurimoto, H., (2001a). Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: Field occurrence and geochemistry. In: Geochemistry and the Origin of Life, Eds. S. Nakashsima, S. Maruyama, A. Brack, and B.F. Windley, p. 203–236, Universal Acad. Press, Tokyo

    Google Scholar 

  • Ueno, Y., Isozaki, Y., Yurimoto, H., Maruyama, S. (2001b). Carbon isotope signatures of individual Archean microfossils (?) from Western Australia. Intl. Geology Review, 43, 196–212.

    Article  Google Scholar 

  • Ueno, Y., Yoshioka, H., Maruyama, S., Isozaki, Y. (2001c). Carbon and nitrogen isotope geochemistry of kerogen-rich ssilica dikes in the ca. 3.5 Ga North Pole area, Western Australia: sub-seafloor biosphere in the Archean. International Archean Symposium extended abstracts, K.F. Cassidy, J.N. Dunphy, and M.J. van Kranendonk (Eds.), AGSO-Geoscience Australia 2001/37, 99–101.

    Google Scholar 

  • Ueno, Y., Yurimoto, H., Yoshioka, H., Komiya, T., Matuyama, S. (2002). Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua suprcrustal belt, West Greenland: relationship between metamorphism and carbon isotope composition. Geochim. Cosmochim. Acta, 66, 1257–1268.

    Article  ADS  Google Scholar 

  • Van Kranendonk, Webb, G.E. Kamber, B.S. (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and bogenicity of 3.45 Ga carbonates in the Pilbara, and support for a reducing Archean ocean. Geobiology, 1, 91–108.

    Article  Google Scholar 

  • Van Zuilen, M., Lepland, Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.

    Article  ADS  Google Scholar 

  • Veizer, J. (1994). The Archean-Proterozoic transition and its environmental implications. In: Early life on Earth, ed. S. Bengtson, Nobel Symp. 84, Columbia Univ. Press, N.Y., pp. 208–219.

    Google Scholar 

  • Walsh, M.M. (1992). Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res., 54, 271–293.

    Article  ADS  Google Scholar 

  • Walsh, M.M., Lowe, D.R. (1999). Modes of accumulation of carbonaceous matter in the early Archaean: A petrographic and geochemical study of carbonaceous cherts from the Swaziland Supergroup. In: Geologic evolution of the Barberton greenstone belt, South Africa, eds. DR. Lowe, G.R. Byerly, Geol. Soc. Am Spec. Paper, 329, 115–132,.

    Google Scholar 

  • Walsh, M.M., Westall, F. (2003). Archean biofilms preserved in the 3.2—3.6 Ga Swaziland Supergroup, South Africa. In Fossil and Recent Biofilms (ed. W.E. Krumbein, T. Dornieden, and M. Volkmann), Kluwer, Amsterdam, in press.

    Google Scholar 

  • Walter, M.R. (1976). Stromatolites, Springer verlag, Berlin.

    Google Scholar 

  • Walter, M. R. (1983). Archean stromatolites: evidence of the Earth’s earliest benthos. In, Earth’s Earliest Biosphere (J. W. Schopf, eds.). Princeton University Press, Princeton. p. 187–213.

    Google Scholar 

  • Westall, F. (1999). The nature of fossil bacteria. J. Geophys. Res., 104, 16,437–16,451.

    Article  ADS  Google Scholar 

  • Westall, F. (2003a). The geological context for the origin of life and the mineral signatures of fossil life. In The Early Earth and the origin of Life, H. Martin, M. Gardaud, G. Reisse, B. Barbier (Eds). Springer, Berlin, in press.

    Google Scholar 

  • Westall, F. (2003b). Stephen Jay Gould, les procaryotes et leur évolution dans le contexte géologique. Palevol, 2, 485–501.

    Article  Google Scholar 

  • Westall, F., Gerneke, D. (1998). Electron microscope methods in the search for the earliest life forms on Earth (in 3.5-3.3 Ga cherts from the Barberton greenstone belt, South Africa): applications for extraterrestrial studies. SPIE: Instruments, Methods and Missions for Astrobiology, 3441, 158–169.

    ADS  Google Scholar 

  • Westall, F., Walsh, M.M. (2000). The diversity of fossil microorganisms in Archaean-age rocks. In, Journey to Diverse Microbial Worlds, Ed. J. Seckbach, Kluwer, Amsterdam, 15–27.

    Google Scholar 

  • Westall, F., Walsh, M.M. (2003). Fossil biofilms and the search for life on Mars. In Fossil and Recent Biofilms, eds. W.E. Krumbein, D. Patterson, G. Zavarzin, Kluwer, Amsterdam, in press.

    Google Scholar 

  • Westall, F., Folk, R.L. (2003). Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: Implications for the search for life in ancient rocks. Precambrian Res., 126, 313–330.

    Article  Google Scholar 

  • Westall, F., De Wit, M.J., Walsh, M.M., Folk, R.L., Chafetz, H., Gibson, E.K. (1999). An Early Archean, organic carbon-rich microbialite (3.3–3.4 Ga) from the Barberton greenstone belt. South Africa. Intl. Soc. Study of the Origin of Life (ISSOL), Abstr.

    Google Scholar 

  • Westall, F., Steele, A., Toporski, J. Walsh, M., Allen, C., Guidry, S., Gibson, AE., Mckay, D., Chafetz, H., (2000). Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial samples. J. Geophys. Res. Planets., 105, 24,511–24,527.

    Article  ADS  Google Scholar 

  • Westall, F., De Wit, M.J., Dann, J., Van Der Gaast., S., De Ronde., C., Gerneke., D., (2001). Early Archaean fossil bacteria and biofilms in hydrothermally-influenced, shallow water sediments, Barberton greenstone belt, South Africa. Precambrian Res., 106, 93–116.

    Article  Google Scholar 

  • Westall, F., Brack, A., Barbier, B., Bertrand, M., Chabin, A. (2002). Early Earth and early life: an extreme environment and extremophiles — application to the search for life on Mars. Proceedings of the Second European Workshop on Exo/Astrobiology Graz, Austria, 16–19 September 2002, ESA SP-518, pp. 131–136.

    Google Scholar 

  • Westall, F., Hofmann, B, Brack, B. (2004). Searching for fossil microbial biofilms on Mars: a case study using a 3.46 billion-year old example from the Pilbara in Australia. Proceedings of the Third European Workshop on Exo/Astrobiology Madrid, Spain 18–20 2003 ESA Spec. Pub. 545, in press.

    Google Scholar 

  • Wiegel, J., Adams, M.W. (1998). Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, N.Y.

    Google Scholar 

  • Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Westall, F. (2004). Early Life on Earth: The Ancient Fossil Record. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_12

Download citation

Publish with us

Policies and ethics