Skip to main content

Effect of nucleotides and environmental factors on the intermediate states of ATP hydrolysis cycle in skeletal muscle fibres

  • Chapter
The Nature of Biological Systems as Revealed by Thermal Methods

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holmes, K. C. (1998) A molecular model for muscle contraction. Acta Cryst., A54, 789–797.

    CAS  Google Scholar 

  2. Holmes, K. C. (1998) A powerful stroke. Nature Struct. Biol., 5, 940–942.

    CAS  Google Scholar 

  3. Rayment, I. Holden, H. M. Whittaker, M. Yohn, C. B. Lorenz, M. Holmes, K. C. Milligan, R. A (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261, 58–65.

    CAS  Google Scholar 

  4. Baumann, B. A. J. Hambly, B. D. Hideg, K. Fajer, P. G. (2001) The regulatory domain of the myosin head behaves as a rigid lever. Biochemistry, 40, 7868–7873.

    Article  CAS  Google Scholar 

  5. Dominguez, R. Freyzon, Y. Trybus, K. M. Cohen, C. (1998) Chystal structure of a vertebrate smooth muscle myosin motor domain and its complex with essential light chain: visualization of the pre-power stroke state. Cell, 94, 659–671.

    Article  Google Scholar 

  6. Houdusse, A. Kalabokis, V. N. Himmel, D. Szent-Györgyi, A. G. Cohen, C. (1999) Atomic struc ture of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell, 97, 459–470.

    Article  CAS  Google Scholar 

  7. Geeves, M. A. Holmes, K. C. (1999) Structural mechanisms of muscle contraction. Annu. Rev. Biochem., 68, 687–728.

    Article  CAS  Google Scholar 

  8. Trentham, D.R. Bardsley, R. G. Eccleston, J. P. Weeds, A.G. (1972) Elementary processes of the magnesium ion-de pendent adenosine triphosphatase activity of heavy meromyosin. Biochem. J., 126, 635–644.

    CAS  Google Scholar 

  9. Bagshaw, C. R. Trentham, D. R. (1974) The characterization of myosin-product complexes and of product release step during magnesiumion-dependent adenosine triphosphatase reaction. Biochem. J., 141, 331–349.

    CAS  Google Scholar 

  10. Eisenberg, E. and Greene, L.E. (1980) The relation of muscle biochemistry to muscle physiology. Ann. Rev. Physiol., 42, 293–309.

    CAS  Google Scholar 

  11. Smith, C., A. and Rayment, I. (1996) X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry, 35, 5404–5417.

    CAS  Google Scholar 

  12. Pate, E. Naber, N. Matuska, M, Franks-Skiba, K. Cooke, R. (1997) Opening of the myosin nucleotide triphosphate binding domain during the ATPase cycle. Biochemistry, 36, 12155–12166.

    Article  CAS  Google Scholar 

  13. Málnási-Csizmadia, A. Pearson, D. S. Kovács, M. Wooley, R. J. Geeves, M. A. Bagshaw, C. R. (2001) Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with Dictyostelium myosin II mutant containing a single tryptophan mutant. Biochemistry, 40, 12727–12737.

    Google Scholar 

  14. Málnási-Csizmadia, A. Kovács, M. Wooley, R. J. Botchway, S. W. Bagshaw, C. R. (2001) The dynamics of the relay loop tryptophan residue in the Dictyostelium myosin motor domain and the origin of spectroscopic signals. J. Biol. Chem., 276, 19483–19490.

    Google Scholar 

  15. Pliszka, B. Karczewska, E. Wawro, B. (2000) Nucleotide-induced movement in the myosin head near the converter region. Biochim. Biophys. Acta, 1481, 55–62.

    CAS  Google Scholar 

  16. Goodno C. C. (1979) Inhibition of myosin ATPase by vanadate ion. Proc. Natl. Acad. Sci. USA 76, 2620–2624.

    CAS  Google Scholar 

  17. Barnett, V. A. Thomas, D. D. (1987) Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis. Biochemistry, 26, 314–323.

    Article  CAS  Google Scholar 

  18. Ajtai, K. Peyser, M. Park, S. Burghardt, T. P. Muhlrad, A. (1999) Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during consecutive steps of ATP hydrolysis. Biochemistry, 38, 6428–6440.

    Article  CAS  Google Scholar 

  19. Nyitrai, M., G. Hild, A. Lukács, Bódis, E. and Somogyi, B. (2000) Conformational distributions and proximity relationships in the rigor complex of actin and myosin subfragment-1. J. Biol. Chem., 275, 2404–9

    CAS  Google Scholar 

  20. Nyitrai, M., G. Hild, E. Bódis, Lukács, A. and Somogyi, B. (2000) Flexibility of myosin-subfragment-1 in its complex with actin as revealed by fluorescence resonance energy transfer. Eur. J. Biochem., 267, 4334–8.

    Article  CAS  Google Scholar 

  21. Cooke, R. (1986) The mechanism of muscle contraction. CRC Crit. Rev. Biochem,. 21, 53–118.

    CAS  Google Scholar 

  22. Fisher, A. J. Smith, C. A. Thoden, J. Smith, R. Sutoh, K. Holden, H. M., Rayment, I. (1995) Structural studies of myosin:nucleotide complexes: A revised model of the molecular basis of muscle contraction. Biophys. J., 68, 19s–28s.

    CAS  Google Scholar 

  23. Fisher, A. J. Smith, C. A. Thoden, J. Smith R. Sutoh, K. Holden, H. M. Rayment, I. (1995) X-raystruc tures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP. BeFxx and MgADP.AlF4. Biochemistry, 34, 8960–8972.

    CAS  Google Scholar 

  24. Palm, T. Sale, K. Brown, L. Li, H. Hambly, B. D. Fajer, P. G. (1999) Intradomain distances in the regulatory domain of the myosin head in prepower and postpower stroke state: fluorescence energy transfer. Biochemistry, 38, 13026–13034.

    Article  CAS  Google Scholar 

  25. Ling, N. Shrimpton, C. Sleep, J. Kendrick-Jones, J. Irving, M. (1996) Fluorescent probes on orientation of myosin regulatory light chains in relaxed, rigor and contracting muscle. Biophys. J., 70, 1836–1846.

    CAS  Google Scholar 

  26. Fajer, P. G. Fajer, E. A. Schoenberg, M. Thomas, D. D. (1991) Orientational disorder and motion of weakly at tached cross-bridges. Biophys. J., 60, 642–649.

    CAS  Google Scholar 

  27. Hambly, B. Franks, K. Cooke, R. (1992) Paramagnetic spin probes at tached to a light chain on the myosin head are highly disordered in active muscle fibres. Biophys. J., 63, 1306–1313.

    CAS  Google Scholar 

  28. Sekine, T. Kielley, W. W. (1964) The enzymatic properties of N-ethylmaleimide modified myosin. BBA, 81, 336–345.

    CAS  Google Scholar 

  29. Zhao, L. Naber, N. Cooke, R. (1995) Muscle cross-bridges bound to actin are disordered in the presence of 2,3-butanedione monoxime. Biophys. J., 68, 1980–1990.

    CAS  Google Scholar 

  30. Frisbie, S. M. Xu, S. Chalovich, J. M. Yu, L. C. (1998) Characterization of cross-bridges in the presence of saturating concentrations of MgAMP-PNP in rabbit permeabilized psoas muscle. Biophys. J., 74, 3072–3082.

    CAS  Google Scholar 

  31. Zhao, L. Gollub, J. Cooke, R. (1996) Orientation of paramagnetic probes attached to gizzard regulatory light chain bound to myosin heads in rabbit skeletal muscle. Biochemistry, 35, 10158–10165.

    CAS  Google Scholar 

  32. Crowder, M. S. Cooke, R. (1984) The effect of myosin sulphydryl modification on the mechanics of fibre contraction. J. Muscle Cell Motil., 5, 131–146.

    CAS  Google Scholar 

  33. Fajer, P. G. and Marsh, D. (1982) Microwave and modulation field inhomogenities and effect of cavity Q in saturation transfer EPR spectra. Dependence of sample size. J. Mag. Res., 49, 212–224.

    CAS  Google Scholar 

  34. Thomas, D. D. Cooke, R. (1980) Orientation of spin-labeled myosin heads in glycerinated muscle fibres. Biophys. J., 32, 891–906.

    CAS  Google Scholar 

  35. Levitsky, D. I. Shnyrov, V. L. Khvorov, N. V. Bukatina, A. E. Vedenkina, N. S. Permyakov, E. A. Nikolaeva, O. P. Poglazov, B. F. (1992) Effects of nucleotide binding on thermal transitions and domain structure of myosin subfragment 1. Eur. J. Biochem., 209, 829–835.

    Article  CAS  Google Scholar 

  36. Wakabayashi, K. Tokunaga, M. Kohno, I. Sugimoto, Y. Hamanaka, T. Takezawa, Y. Wakabayashi, T. Ameniya, Y. (1992) Small-angle synchrotron x-ray scattaring reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science, 258, 443–447.

    CAS  Google Scholar 

  37. Bobkov, A. A. Levitsky, D. I. (1995) Differential scanning calorimetric study of the complexes of myosin subfragment-1 with nucleoside diphosphates and vanadate or beryllium fluoride. Biochemistry, 34, 9708–9713.

    Article  CAS  Google Scholar 

  38. Baker, J. E. Brust-Mascher, I. Ramachandran, S. LaConte, L. E. W. Thomas, D. D. (1998) A large and distict rotation of the myosin light chain domain occurs upon muscle contraction. Proc. Natl. Acad. Sci., USA 95, 2944–2949.

    CAS  Google Scholar 

  39. Belagyi, J. Frey I. Pótó, L. (1994) ADP-induced changes in ordering of spin-labelled myosin heads in muscle fibres. Eur. J. Biochem., 224, 215–222.

    Article  CAS  Google Scholar 

  40. Belagyi, J. Lőrinczy, D. (1996) Internal motion in myosin head: effect of ADP and ATP. Biochem. Biophys. Res. Comm., 219, 936–940.

    Article  CAS  Google Scholar 

  41. Lõrinczy, D. Hoffmann, U. Pótó, L. Belágyi, J. Laggner, P. (1990) Conformational changes in bovine heart myosin as studied by EPR and DSC techniques. Gen. Physiol. Biophys., 9, 589–603.

    Google Scholar 

  42. Sanchez-Ruiz, J. M. Lopez-Lacomba, J. L. Cortijo, M. Mateo, P. L. (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry, 27, 1648–1652.

    CAS  Google Scholar 

  43. Conjero-Lara, F. Mateo, P. L. Aviles, F. X. Sanchez-Ruiz, J. M. (1991) Effect of Zn2+ on the thermal denaturation of carboxypepdidase B. Biochemistry, 30, 2067–2072.

    Google Scholar 

  44. Thorolfsson, M. Ibarra-Molero, B. Fojan, P. Petersen, S. B. Sanchez-Ruiz, J. M. Martinez, A. (2002) L-Phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry, 41, 7573–7585.

    Article  CAS  Google Scholar 

  45. Lumry, R. Eyring, H. (1954) Conformation changes of proteins. J. Phys. Chem., 58, 110–120.

    Article  CAS  Google Scholar 

  46. Vogl, T. Jatzke, C. Hinz, H-J. Benz, J. Huber, R. (1997) Thermodynamic stability of annexin V E17G: equilibrium parameters from an irreversible unfolding reaction. Biochemistry, 36, 1657–1668.

    Article  CAS  Google Scholar 

  47. Bertazzon, A. Tian, G. H. Tsong, T. Y. (1988) Differential scanning calorimetric (DSC) study of thermalun folding of myosin and its subfragments in several forms of assemblies. Biophys. J., 53, 236a.

    Google Scholar 

  48. Bobkov, A. A. Khovorov, N. K. Golitsina, N. L. and Levitsky, D. I. (1993) Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride. FEBS Lettr., 332, 64–66.

    CAS  Google Scholar 

  49. Kiss, M. Belagyi, J. Lõrinczy, D. (2003) Vanadate (Vi) and ADP induced domain motions in myosin head by DSC and EPR. J. Therm. Anal. Cal., 72, 573–580.

    Article  CAS  Google Scholar 

  50. Fajer, P. G. (1994) Determination of spin-label orientation within the myosin head. Proc. Natl. Acad. Sci., USA, 91, 937–941.

    CAS  Google Scholar 

  51. Lőrinczy, D. Hartvig, N. Farkas, N. Belagyi, J. (2001) Binding of nucleotides at the active site modulates the local and global conformation of myosin inmuscle fibres. J. Therm. Anal. Cal., 65, 351–358.

    Google Scholar 

  52. Rayment, I. Holden, H. M. Whittaker, M. Yohn, C. B. Lorenz, M. Holmes, K. C. and Milligan, R. A. (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261, 58–65.

    CAS  Google Scholar 

  53. Setton, A. and Muhlrad, A. 1984. Effect of mild heat treatment on the ATPase activity and proteolytic sensitivity of myosin subfragment-1. Arch. Biochem. Biophys., 235, 411–417.

    Google Scholar 

  54. Levitsky, D. I. Khvorov, N. V. Shnyrov, V. L. Vedenkina, N. S. Permyakov, E. A., Poglazov, B. F. (1990) Domain structure of myosin subfragment-1. Selective denaturation of the 50 kDa segment. FEBS Letters, 264, 176–178.

    Article  CAS  Google Scholar 

  55. Lőrinczy, D. Belagyi, J. (1995) Scanning calorimetric and EPR studies on the thermal stability of actin. Thermochim. Acta, 259, 153–164.

    Google Scholar 

  56. Lőrinczy, D. Könczöl, F. Gaszner, B. Belagyi, J. (1998) Structural stability of actin filaments as studied by DSC and EPR. Thermochim. Acta, 322, 95–100.

    Google Scholar 

  57. Lőrinczy, D. Hartvig, N. Belagyi, J. (2001) Nucleotide analogue induces global and local changes in muscle fibres. J. Therm. Anal. Cal., 64, 651–658.

    Google Scholar 

  58. Raucher, D. Fajer, P. G. (1994) Orientation and dynamics of myosin heads in aluminum fluoride in duced pre-power stroke states: an EPR study. Biochemistry, 33, 11993–99.

    CAS  Google Scholar 

  59. Gulick, A. M. Bauer, C. B. Thoden, J. B. Rayment, I. (1997) X-ray structure of the MgADP, MgATPgammaS, and MgAMP.PNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry, 36, 11619–11628.

    Article  CAS  Google Scholar 

  60. Fajer, P. G. Fajer, E. A. Brunsvold, N. J. Thomas, D. D. (1988) Effects of AMPPNP on the orientation and rotational dynamics of spin-labeled muscle cross-bridges. Biophys. J., 53, 513–524.

    CAS  Google Scholar 

  61. Hartvig, N. Lőrinczy, D. Farkas, N. Belagyi, J. (2002) Effect of adenosine 5′-[β,γ-imido]triphosphate on myosin head domain motions. Saturation transfer EPR measurements without low-power phase setting. Eur. J. Biochem., 269, 2168–2177.

    Article  CAS  Google Scholar 

  62. Belagyi, J. Hartvig, N. Lőrinczy, D. Farkas, N. (2001) EPR study of BeF3 and AlF4 containing myosin nucleotide complexes. Muscle Res. Cell Motil., 22, 585.

    Google Scholar 

  63. Katus, H. A. Yasuda, T. Gold, H. K. Leinbach, R. C. Strauss, H. W. Waksmonski, C. Haber, E. Khaw, B. A. (1984) Diagnosis of acute myocardial in farction by detection of circulating cardiac myosin light chains. Am. J. Cardiol., 54, 964–970.

    Article  CAS  Google Scholar 

  64. Katus, H. A. Diederich, K. W. Uellner, A. Remppis, A. Schuler, G. Kubler, W. (1988) Myosin light chain release in acute myocardial infarction: non-invasive estimation of infarct size. Cardiovasc. Res., 22, 456–463.

    CAS  Google Scholar 

  65. Apple, F. S. (1992) Acute myocardial in farction and coronary reperfusion. Serum cardiac markers for the 1990s. Am. J. Clin. Pathol., 97, 217–226.

    CAS  Google Scholar 

  66. Gupta, M. Singal, P. K. (1987) Oxygen radical injury in the presence of desferal, a specific iron-chelating agent. Biochem. Pharmacol., 36, 3774–3777.

    CAS  Google Scholar 

  67. Kaneko, M. Masude, H. Suzuki, H. Matsumoto, Y. Kobayashi, A. Yamazaki, N. (1993) Modification of contractile proteins by oxygen free radicals in rat heart. Mol. Cell. Biochem., 125, 163–169.

    Article  CAS  Google Scholar 

  68. Könczöl, F. Lőrinczy, D. Belágyi, J. (1998) Effect of oxygen free radicals on myosin in muscle fibres. FEBS Letters, 427, 341–344.

    Article  Google Scholar 

  69. Rustgi, S. Riesz, P. (1978) E.s.r. and spin-trapping studies of the reactions of hydrated electrons with dipeptides. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 34, 127–148.

    CAS  Google Scholar 

  70. Lőrinczy, D. Gaszner, B. Könczöl, F. Belagyi, J. (2000) Effect of oxygen free radicals on myosin in muscle fibres. DSC and EPR study. J. Therm. Anal. Cal., 61, 597–605.

    Google Scholar 

  71. Lőrinczy, D. Könczöl, F. Farkas, L. Gaszner, B. Belagyi, J. (2000) UV generated oxygen free radicals in cardiac myosin. DSC and EPR study. Thermochim. Acta, 343, 35–41.

    Google Scholar 

  72. Lőrinczy, D. Belágyi, J. (1996) Internal flexibility of cardiac myosin. J. Therm. Anal., 47, 503–514.

    Google Scholar 

  73. Grammer, J. C. Cremo, C. R. Yount, R. G. (1988) UV-induced vanadate-dependent modification and cleavage of skeletal myosin subfragment 1 heavy chain. 1. Evidence for active site modification. Biochemistry, 27, 8408–8415.

    Article  CAS  Google Scholar 

  74. Cremo, C. R. Grammer, J. C. Yount, R. G. (1988) UV-induced vanadate-dependent modification and cleavage of skeletal myosin subfragment 1 heavy chain. 2. Oxidation of serine in the 23-kDa NH2-terminal tryptic peptide. Biochemistry, 27, 8415–8420.

    Article  CAS  Google Scholar 

  75. Graceffa, P. (1983) Spin labeling of protein sulfhydryl groups by spin trapping a sulfur radical: application to bovine serum albumin and myosin. Arch. Biochem. Biophys., 225, 802–808.

    Article  CAS  Google Scholar 

  76. Kielley, W. W. Bradley, L. B. (1956) The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J. Biol. Chem., 218, 653–659.

    CAS  Google Scholar 

  77. Nyitrai, M. Hild, G., Belágyi, J. Somogyi, B. (1997) Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations. Biophys. J., 73, 2023–2032.

    CAS  Google Scholar 

  78. Nyitrai, M. Hild, G. Lakos, Zs. Somogyi, B. (1998). Effect of Ca2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin. Biophys. J., 74, 2474–2481.

    CAS  Google Scholar 

  79. Hild, G. Nyitrai, M. Belágyi, J. Somogyi, B. (1998) The influence of divalent cations on the dynamic properties of actin filaments: a spectroscopic study. Biophys. J., 75, 3015–3022.

    CAS  Google Scholar 

  80. Nyitrai, M. Hild, G. Belágyi, J. Somogyi, B. (1999) The flexibility of actin filaments as revealed by fluorescence resonance energy transfer. The influence of divalent cations. J. Biol. Chem., 274, 12996–13001.

    Article  CAS  Google Scholar 

  81. Gaszner, B. Nyitrai, M. Hartvig, N. Kőszegi, T. Somogyi, B. Belágyi, J. (1999) Replacement of ATP with ADP affects the dynamic and conformational properties of actin monomer. Biochemistry, 38(39), 12885–12892.

    Article  CAS  Google Scholar 

  82. Nyitrai, M. Hild, G. Hartvig, N. Belágyi, J. Somogyi, B. (2000) Conformational and dynamic differences between actin filaments polymerized from ATP-or ADP-actin monomers. J. Biol. Chem., 275, 41143–41149.

    Google Scholar 

  83. Hild, G. Nyitrai, M. Somogyi, B. (2002) Intermonomer flexibility of Ca-and Mg-actin filaments at different pH values. Eur. J. Biochem., 269, 842–849.

    Article  CAS  Google Scholar 

  84. Liu, D. F. Wang, D. Stracher, A. (1990) The accessibility of the thiol groups on G-and F-actin of rabbit muscle. Biochem. J., 266, 453–459.

    CAS  Google Scholar 

  85. Kuznetsov, A. N. Ebert, B. Lassmann, G. Shapiro, A. B. (1975) Adsorption of small molecules to bovine serum albumin studied by the spin-probe method. Biochim. Biophys. Acta., 379, 139–146.

    CAS  Google Scholar 

  86. Zolkiewski, M. Redowicz, M. J. Korn, E. D. Ginsburg, A. (1995) Thermally induced unfolding of Acanthamoeba myosin II and skeletal muscle myosin: nucleotide effects. Arch. Biochem. Biophys., 318, 207–214.

    Article  CAS  Google Scholar 

  87. Shriver, J. W. Kamath, U. (1990) Differential scanning calorimetry of the unfolding of myosin subfragment 1, subfragment 2, and heavy meromyosin. Biochemistry, 29, 2556–2564.

    Article  CAS  Google Scholar 

  88. Swenson, C. A. Ritchie, P. A. (1980) Conformational transitions in the subfragment-2 region of myosin. Biochemistry, 19, 5371–5375.

    Article  CAS  Google Scholar 

  89. King, L. Lehrer, S. (1989) Thermal unfolding of myosin rod and light meromyosin: circular dichroism and tryptophan fluorescence studies. Biochemistry, 28, 3498–3507.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

ŐLõrinczy, D. (2004). Effect of nucleotides and environmental factors on the intermediate states of ATP hydrolysis cycle in skeletal muscle fibres. In: Lörinczy, D. (eds) The Nature of Biological Systems as Revealed by Thermal Methods. Hot Topics in Thermal Analysis and Calorimetry, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2219-0_7

Download citation

Publish with us

Policies and ethics