Skip to main content

Thermal analyses and combined techniques in food physical chemistry

  • Chapter
  • 965 Accesses

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 5))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sá, M. M. and Sereno, A. M.: Glass transitions and state diagrams for typical natural fruits and vegetables, Thermochim. Acta, 246 (1994) 285–297.

    Article  Google Scholar 

  2. Slade, L. and Levine, H.: Glass transition and water-food interactions, Adv. Food Nutr. Res., 38 (1995) 103–269.

    CAS  Google Scholar 

  3. Roos, Y. H.: Phase transitions in foods, Academic Press, New York (1995).

    Google Scholar 

  4. Slade, L. and Levine, H.: Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety, Crit. Rev. Food Sci. Nutr., 30 (1991) 115–360.

    CAS  Google Scholar 

  5. Roos, Y. H.: Glass transition-related physico chemical changes in foods. Food Technology, Overview outstanding symposia in Food science and Technology (1995), October issue, 97–102.

    Google Scholar 

  6. Fessas, D. and Schiraldi, A.: State diagrams of arabinoxylan-water binaries, Thermochim. Acta, 370 (2001) 83–89.

    Article  CAS  Google Scholar 

  7. Slade, L. and Levine, H.: Water and the glass transition. Dependence of the glass transition on composition and chemical structure: special implications for flour functionality in cookie baking, J. Food Eng., 22 (1994) 143–188.

    Article  Google Scholar 

  8. Kalentunç, G. and Breslauer K. J.: Glass transition of extrudates: relationship with processing-induced fragmentation and end-product attributes, Ceral Chem., 70 (1993) 548–552.

    Google Scholar 

  9. Roudaut, G. Maglione, M. van Dusschoten, D. and Le Meste, M.: Molecular mobility in glassy bread: a multispectroscopy approach, Cereal Chem., 76 (1999) 70–77.

    CAS  Google Scholar 

  10. Bizot, H. Le Bail, P. Leroux, B. Davy, J. Roger, P. and Buleon, A.: Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds, Carbhydr. Polym., 32 (1997) 33–50.

    CAS  Google Scholar 

  11. Chinachoti, P. Kim-Shin, M. Mari, F. and Lo, L.: Gelatinization of wheat starch in the presence of sucrose and sodium chloride: correlation between gelatinizaton temperature and water mobility as determined by oxyen-17 nuclear magnetic resonance, Cereal Chem., 68 (1991) 245–248.

    CAS  Google Scholar 

  12. Peleg, M.: A note of the tan δ(T) peak as a glass transition indicator in biosolids, Rheol. Acta, 34 (1995) 215–220.

    Article  CAS  Google Scholar 

  13. Cocero, A. M. and Kokini, J. L.: The study of the glass transition of glutenin using small amplitude oscillatory rheologcal measurements and differential scanning calorimetry. J. Rheol., 35 (1991) 257–270.

    Article  CAS  Google Scholar 

  14. Johnson, J. M. Davis, E. A. and Gordon, J.: Interactions of starch and sugar water measured by electron spin resonance and differential scanning calorimetry, Cereal Chem., 67 (1990) 286–291.

    CAS  Google Scholar 

  15. Shah, N. K. and Ludescher, R. D.: Phosphorescence probes of the glassy state in amorphous sucrose, Biotechnol. Prog., 11 (1995) 540–544.

    Article  CAS  Google Scholar 

  16. Russel, P. L.: Gelatinization of starches of different amylose/amylopectin content. A study by differential scanning calorimetry, J. Cereal Sci., 6 (1987) 133–145.

    Google Scholar 

  17. Goff, H. D. Montoya, K. and Sahagian, M. E.: The effect of microstructure on the complex glass transition occurring in frozen glucose model systems and foods. In Amorphous food and pharmaceutical Systems. H. Levine Ed., Royal Soc. Chemistry, Cambridge, UK, 145–157.

    Google Scholar 

  18. Tester, R. F. and Debon, S. J. J.: Annealing of starch: a review, Int. J. Biol. Macromol., 27 (2000) 1–12.

    Article  CAS  Google Scholar 

  19. Le Bail, P. et al.,: Monitoring the crystallization of amylose-lipid complexes during maize starch melting by synchrotron X-ray diffraction, Biopolymers, 50 (1999) 99–110.

    Google Scholar 

  20. Loisel, C. Keller, G. Lecq, G. Bourgaux, C. and Ollivon, M.: Phase transitions and polymorphism of cocoa butter, J. Am. Oil Chem. Soc., 75 (1998) 425–439.

    CAS  Google Scholar 

  21. Keller, G. Lavigne, F. Forte, L. Andrieux, K. Dahim, M. Loisel, C. Ollivon, M. Bourgaux, C. and Lesieur, P.: DSc and X-ray diffraction coupling: specifications and applications, J. Therm. Anal. Cal., 51 (1998) 783–791.

    CAS  Google Scholar 

  22. Zobel, H. F.: Starch crystal transformations and their industrial importance, Starch/Staerke, 40 (1988) 1–7.

    CAS  Google Scholar 

  23. Schiraldi, A. Piazza, L. Fessas, D. and Riva, M.: Thermal Analyses In Foods And Food Processes. in ‘Handbook of Thermal Analysis and Calorimetry’. R. Kemp Editor, Elsevier Publ. Amsterdam, The Netherlands, Vol. 4 ‘From Macromolecules to Man’ chapter 16 (1999) 829–921.

    Google Scholar 

  24. Shiotsubo, T.: Changes in enthalpy and heat capacity associated with the gelatinisation of potato starch as evaluated from isothermal calorimetry, Carbohydr. Res., 158 (1986) 1–6.

    Article  CAS  Google Scholar 

  25. Riva, M. Piazza, L. and Schiraldi, A.: Starci gelatinization in pasta cooking: differential flux calorimetry investigations, Cereal Chem., 68 (1991) 622–627.

    CAS  Google Scholar 

  26. Riva, M. Schiraldi, A. and Piazza, L.: Characterization of rice cooking: isothermal differential calorimetry investigations, Thermochim. Acta, 246 (1994) 317–328.

    Article  CAS  Google Scholar 

  27. Schiraldi, A.: Microbial growth and metabolism: modelling and calorimetric characterization, Pure Appl. Chem., 67 (1995) 1873–1878.

    CAS  Google Scholar 

  28. Fessas, D. and Schiraldi, A.: Water proper ties in wheat flour dough I: classical thermogravimetry approach, Food Chemistry., 72 (2001) 237–244.

    Article  CAS  Google Scholar 

  29. Schiraldi, A.: Water Partition in Starch Products: Thermophysical Methods and Nuclear Magnetic Resonance Applications, in Starch and Starch Containing Origins — Structure, Properties and New Technologies, Ed. V.P. Yuryev, A. Cesaro, W. Bergthaler, Nova Science Publisher, NY (2002) 287–295.

    Google Scholar 

  30. Richardson, S. J. Baianu, I. C. and Steinberg, M. P.: Mobility of water in wheat flour suspensions as studied by 1H and 17O NMR, J. Agr. Food Chem., 34 (1986) 17–23.

    Article  CAS  Google Scholar 

  31. Y-Ro Kim and Cornillon, P.: Effects of Temperature and Mixing Time on Molecular Mobility in Wheat Dough, Lebensm. Wiss. Technol., 34 (2001) 417–423.

    Google Scholar 

  32. Schiraldi, A. and Fessas, D.: Classical and Knudsen Thermogravimetry to check States and Displacements of Water in Food Systems, J. Therm. Anal. Cal., 71 (2003) 221–231.

    Article  Google Scholar 

  33. Laaksonen, T. J. and Roos, Y. H.: Thermal, dynamic-mechanical and dielectric analysis of phase and state transitions of frozen wheat doughs, J. Cereal Sci., 32 (2000) 281–292.

    Article  CAS  Google Scholar 

  34. Dreese, P. C. Faubion, J. M. and Hoseney, R. C.: Dynamic rheological properties of flour, gluten, and gluten-starch doughs. II. Effect of various processing and in gredient changes, Cereal Chem., 65 (1988) 354–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schiraldi, A. (2004). Thermal analyses and combined techniques in food physical chemistry. In: Lörinczy, D. (eds) The Nature of Biological Systems as Revealed by Thermal Methods. Hot Topics in Thermal Analysis and Calorimetry, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2219-0_2

Download citation

Publish with us

Policies and ethics