Skip to main content

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 5))

  • 972 Accesses

Abstract

Social insects (honey- and bumblebees, wasps, hornets, ants and termites) are interesting in many aspects, among them the energetic advantages of social life and conquering of unfavourable territories. Own investigations and data from literature deal with the energy metabolism of these insects (except termites because of experimental difficulties), with locomotor activities, energy balances of foraging, energy saving by insulation of wasp nests com pared with the afford to construct the wooden envelope, bee cluster strategy for surviving at low temperatures, and rearing of brood.

The energy and heat flow data were obtained by in direct and isoperibol direct calorimetry, bomb calorimetry, experiments with a customer constructed carousel flight calorimeter, thermometry, and false colour thermography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hölldobler, B. Wilson, E. O.: A Journey to the Ants. Harvard University Press, Cambridge Massachusetts, 1994.

    Google Scholar 

  2. Gullan, P. J. Cranston, P. S.: The In sects. An Outline of Entomology. Chapman and Hall, London 1994.

    Google Scholar 

  3. Moritz, R. F. A. Southwick, E. E.: Bees as Superorganisms. Springer, Berlin 1992.

    Google Scholar 

  4. Sweeney, B. W. Vannote, R. L.: Population synchrony in mayflies: a predator satiation hypothesis. Evolution, 36 (1982) 810–821.

    Google Scholar 

  5. Ax, P.: Das System der Metazoa II. G. Fischer Verlag, Mainz 1999.

    Google Scholar 

  6. Schmolz, E. Drutschmann, S, Schricker, B. Lamprecht, I.: Calorimetric measurements of energy content and heat production rates during development of the wax moth Galleria mellonella. Thermochim. Acta, 337 (1999) 83–88.

    CAS  Google Scholar 

  7. Buchmann, S. L. Spangler, H. G.: Thermoregulation of the Greater Wax Moth Galleria mellonella. Am. Bee J., 131 (1991) 772.

    Google Scholar 

  8. Mosebach-Pukovski, E.: Über die Larvengesellschaften von Vanessa io und Vanessa urticae. Z. Morphol. Ökol. Tiere, 33 (1937) 358.

    Google Scholar 

  9. Schmolz, E. Schulz, O.: Calorimetric investigations on thermoregulation and growth of wax moth larvae Galleria mellonella. Thermochim. Acta, 251 (1995) 241–245.

    CAS  Google Scholar 

  10. Kleiber, M.: The Fire of Life. Wiley, New York 1961.

    Google Scholar 

  11. Bachman, E. S. Dhillon, H. Zhang, C. Cinti, S. Bianco, A. C., Kobilka, B. K. Lowell, B. B.: AR signaling required for diet-induced thermogenesis and obesity resistance. Science 297 (2003) 843–845.

    Google Scholar 

  12. Trier, T. M. Mattson, W. J.: Diet-induced thermogenesis in insects: a developing concept in nutritional ecology. Enivron. Entomol., 32 (2003) 1–8.

    Google Scholar 

  13. Jindra, M. Sehnal, F.: Larval growth, food consumption, and utilization of dietary protein and energy in Galleria mellonella. J. Insect Physiol., 35 (1989) 719–724.

    Article  Google Scholar 

  14. Jindra, M. Sehnal, F.: Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem., 20 (1990) 389–395.

    CAS  Google Scholar 

  15. Winston, M. L.: The Biology of the Honey Bee. Harvard University Press, Cambridge Massachusetts, 1987.

    Google Scholar 

  16. Tautz, J. Maier, S. Groh, C. Rössler, W. Brockmann, A.: Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. PNAS, 100 (2003) 7343–7347.

    Article  CAS  Google Scholar 

  17. Bell, J.: The heat production and oxygen consumption of pupae of Galleria mellonella at different constant temperatures. Physiol. Zool., 13 (1940) 73–81.

    CAS  Google Scholar 

  18. Kuusik, A. Tartes, U. Harak, M. Hiiesar, K. Metspalu, L.: Developmental changes during metamorphosis in Tenebrio molitor (Coleoptera: Tenebrionidae) studied by calorimetric thermography, Eur. J. Entomol., 91 (1994) 297–305.

    Google Scholar 

  19. Schmolz, E. Lamprecht, I.: Calorimetric investigations on activity states and development of holometabolous in sects. Thermochim. Acta, 349 (2000) 61–68.

    Article  CAS  Google Scholar 

  20. Prat, H.: Calorimetry of higher organisms. In: Brown, H. D.: Biochemical Microcalorimetry, Academic Press, New York and London 1969, pp. 181–198.

    Google Scholar 

  21. Schmolz, E., Kösece, F., Lamprecht I.: The energetics of honeybee development. In prep.

    Google Scholar 

  22. Schmolz, E.: Kalorimetrische Untersuchungen zu Wärmeproduktion und Thermoregulation der Hornisse Vespa crabro. Ph.D. — the sis, Free University of Berlin, 1997.

    Google Scholar 

  23. Harrison, J. F., Hall, H. G.: African-European honeybee hybrids have low nonintermediate metabolic capacities. Nature, 363 (1993) 258–260.

    Article  Google Scholar 

  24. Dyer, F. C. Seeley, T. D.: Interspecific comparison of endothermy in honeybees (Apis): Deviations from the expected size-related pattern. J. Exp. Biol., 127 (1987) 1–26.

    Google Scholar 

  25. Stavenga, D. G. Schwering, P. B. W. Tinbergen, J.: A three-compartment model describing temperature changes in tethered flying bowflies. J. Exp. Biol., 185 (1993) 325–333.

    Google Scholar 

  26. Ludwig, H. G.: Der Sauerstoffverbrauch fliegender Coleopteren. Verh. Dt. Zool. Ges., 1960 (1961) 96–99.

    Google Scholar 

  27. Gmeinbauer, R. Crailsheim, K.: Glucose utilitization during flight of the honeybee (Apis mellifera) workers, drones and queens. J. Insect Physiol., 39 (1993) 959–967.

    Article  CAS  Google Scholar 

  28. Nachtigall, W. Rothe, U. Feller, P. Jungmann, R.: Flight of the honeybee III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J. Comp. Physiol., 158B (1989) 729–737.

    Google Scholar 

  29. Schmolz, E. Schricker, B. Lamprecht, I.: Direct carousel flight calorimeter for metabolic investigations of small insects. J. Therm. Anal., 52 (1998) 33–44.

    Article  CAS  Google Scholar 

  30. Ellington, C. Machin, K. E. Casey, T. M.: Oxygen consumption of bumbleebees in forward flight. Nature, 347 (1990) 472–473.

    Article  Google Scholar 

  31. Nachtigall, W., Hanauer-Thieser, U., Mörz, M.: Flight of the honeybee VII. Metabolic power versus flight speed relation. J. Comp. Physiol., 165B (1995) 484–489.

    Google Scholar 

  32. Schmolz, E. Brüders, N. Schricker, B. Lamprecht, I.: Direct calorimetric measurement of heat production rates in flying hornets (Vespa crabro; Hymenoptera). Thermochim. Acta, 328 (1999) 3–8.

    Article  CAS  Google Scholar 

  33. Spiewok, S. Schmolz, E.: Changes in temperature and light alter the flight velocity of hornets. Proc. R. Soc. Biol. Sci., submitted, 2003.

    Google Scholar 

  34. Harrison, J. F. Fewell, J. H. Roberts, S. P. Hall, H. G.: Achievement of thermal stability by varying metabolic heat production in flying honeybees. Science, 274 (1996) 88–90.

    Article  CAS  Google Scholar 

  35. Schmolz, E. Geisenheyner, S. Schricker, B. Lamprecht, I.: Heat dissipation of flying wax moths (Galleria mellonella) measured by means of direct calorimetry. J. Therm. Anal., 56 (1999) 1185–1190.

    Article  CAS  Google Scholar 

  36. Tobler, I. Neuner-Jehle, M.: 24-h variation of vigilance in the cockroach Blaberus giganteus. J. Sleep Res., 1 (1992) 231–239.

    Google Scholar 

  37. Shaw, P. J. Cirelli, C. Greenspan, R. J. Tononi, G.: Correlates of sleep and waking in Drosophila melanogaster. Science, 287 (2000) 1834–1837.

    Article  CAS  Google Scholar 

  38. Kaiser W.: Busy bees need rest, too. Behavioural and electromyographical sleep signs in honey bees. J. Comp. Physiol., A 163 (1988) 565–584.

    Google Scholar 

  39. Drucker-Colin, R.: The function of sleep is to regulate brain excitability in order to satisfy the requirements imposed by waking. Behav. Brain Res., 69 (1995) 117–124.

    CAS  Google Scholar 

  40. Brown, R.: Muramyl peptides and the functions of sleep. Behav. Brain Res., 69 (1995) 85–90.

    Article  CAS  Google Scholar 

  41. Everson, C. A.: Functional consequences of sustained sleep deprivation in the rat. Behav. Brain Res., 69 (1995) 43–54.

    Article  CAS  Google Scholar 

  42. Smith, C.: Sleep states and memory processes. Behav. Brain Res., 69 (1995) 137–145.

    Article  CAS  Google Scholar 

  43. Berger, R. J. Phillips, N. H.: Energy conservation and sleep. Behav. Brain Res., 69 (1995) 65–73.

    Article  CAS  Google Scholar 

  44. Heinrich, B.: The Hot-blooded Insects. Springer, Berlin 1993.

    Google Scholar 

  45. Schmolz, E. Hoffmeister, D. Lamprecht, I.: Calorimetric investigations on metabolic rates and thermoregulation of sleeping honeybees (Apis mellifera carnica). Thermochim. Acta, 382 (2002) 221–227.

    Article  CAS  Google Scholar 

  46. Gross, J. Schmolz, E. Hilker, M.: Thermal adaptations of the leaf beetle Chrysomela lapponica (Coleoptera: Chrysomelidae) to different climes of Central and Northern Europe. Environ. Entomol., submitted, 2003

    Google Scholar 

  47. Kittel, A.: Körpergröße, Körperzeiten und Energiebilanz II. Der Sauerstoffverbrauch der Insekten in Abhängigkeit von der Körpergröße. Z. vergl. Physiol. 28 (1941) 533–562.

    Article  Google Scholar 

  48. Coelho, J. R. Moore, A. J.: Allometry of resting metabolic rate in cockroaches. Comp. Biochem. Physiol., 94A (1998) 587–590.

    Google Scholar 

  49. Lehmann, F. O. Dickinson, M. H. Staunton, J.: The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila ssp.). J. Exp. Biol. 203 (2000) 1613–1624.

    CAS  Google Scholar 

  50. Gibo, D. L. Temporale, A. Lamarre T. P. Soutar, B. M. Dew, H. E.: Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera: Vespidae) III. Heat production in queen nests. Can. Ent. 109 (1977) 615–620.

    Google Scholar 

  51. Makino, S. Yamane, S.: Heat production by the foundress of Vespa simillima, with description of its embryo nest. (Hymenoptera: Vespidae). Insecta Matsumurana, 19 (1980) 89–101.

    Google Scholar 

  52. Van Nerum, K. Buelens, H.: Hypoxia-controlled winter metabolism in honeybees (Apis mellifera). Comp. Biochem. Physiol., 117A (1997) 445–455.

    Google Scholar 

  53. Lemke, M. Lamprecht, I.: A model for heat production and thermoregulation in winter clusters of honey bees using differential heat conduction equations. J. theor. Biol., 142 (1990) 261–273.

    Google Scholar 

  54. Worswick, P. V. J. Comparative study of colony thermoregulation in the African honeybee, Apis mellifera adansonii Latreille, and the Cape honey bee, Apis mellifera capensis Escholtz. Comp. Biochem. Physiol., 86A (1987) 95–102.

    Google Scholar 

  55. Newport, G.: On the temperature of in sects, and its connexion with the functions of respiration and circulation in this class of invertebrated animals. Phil. Trans. Roy. Soc. London (1837) 259–338.

    Google Scholar 

  56. Gibo, D. L. Yarascavitch, R. H. Dew, H. E.: Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera: Vespidae) under normal conditions and under cold stress. Can. Entmol., 106 (1974) 503–507.

    Google Scholar 

  57. Martin S. J.: Nest thermoregulation in Vespa simillima, V. tropica and V. analis. Ecol. Entomol., 15 (1990) 301–310.

    Google Scholar 

  58. Gibo, D. L. Dew, H. E. Hajduk, A. S.: Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera: Vespidae). II. The relation between colony biomass and calorie production. Can. Entomol., 106 (1974) 873–879.

    Google Scholar 

  59. Schmolz, E. Lamprecht, I. Schricker, B.: Calorimetric investigations on social thermogenesis in the hornet Vespa crabro L. (Hymenoptera: Vespinae). Thermochim. Acta, 229 (1993)173–180.

    Article  Google Scholar 

  60. Schmolz, E. Lamprecht, I. Schricker, B.: A method for continuous direct calorimetric measurements of energy metabolism in intact hornet (Vespa crabro) and honeybee (Apis mellifera) colonies. Thermochim. Acta, 251 (1995) 293–301.

    CAS  Google Scholar 

  61. Wesolowski, T. Schaarschmidt, B. Lamprecht, I.: A poor man’s calorimeter (PMC) for small animals. J. Ther mal. Anal. 30 (1985) 1403–1413.

    Google Scholar 

  62. Schutze-Motel, P.: Heat loss and thermoregulation in a nest of the bumblebee Bombus lapidarius (Hymenoptera, Apidae). Thermochim. Acta, 193 (1991) 57–66.

    Google Scholar 

  63. Matsuura, M. Yamane, S.: Biology of the Vespine Wasps. Springer, Berlin 1990

    Google Scholar 

  64. Nagy, K. A.: Field metabolic rate and food require ment scaling in mammals and birds. Ecol. Monogr. 57 (1987) 111–128.

    Google Scholar 

  65. Janda, V. Kocián, V.: Über den Sauerstoffverbrauch der Puppen von Tenebrio molitor L. Zool. Jb. 52, Abt. f. allg. Zool. u. Physiol., 519–533, 1933.

    Google Scholar 

  66. Howe R. W.: Temperature effects on the embryonic development. Ann. Rev. Entomol., 12 (1967) 15–42.

    Article  CAS  Google Scholar 

  67. Bursell E.: Environmental Aspects — Temperature. In: Rockstein M. (ed.): The Physiology of Insecta Vol.II (2nd ed.), Academic Press, New York and London, pp 1–41, 1974

    Google Scholar 

  68. Bujok, B. Kleinhenz, M. Fuchs, S, Tautz, J.: Hot spots in the bee hive. Naturwissenschaften 89 (2002) 299–301.

    Article  CAS  Google Scholar 

  69. Ishay J.: Thermoregulation by social wasps: behavior and pheromones. Trans. N.Y. Acad. Sci., 35 (1973) 447–462.

    CAS  Google Scholar 

  70. Veith, H. J. Koeniger N.: Identifizierung von cis 9-Pentacosen als Auslöser für das Wärmen der Brut bei der Hornisse. Naturwissenschaften 65 (1978) 263.

    Article  CAS  Google Scholar 

  71. MacLean, C. Schmolz, E.: Calorimetric in vestigations on theaction of alarm pheromones in the hornet Vespa crabro. Thermochim. Acta, 414 (2004) 71–77.

    Article  CAS  Google Scholar 

  72. Schmolz E. Brüders, N. Daum, R. Lamprecht, I.: Thermoanalytical investigations on paper covers of social wasps. Thermochim. Acta, 361 (2000) 121–129.

    Article  CAS  Google Scholar 

  73. Coenen-Staß, D. Schaarschmidt, B. Lamprecht, I.: Temperature distribution and calorimetric determination of heat production in the nest of the wood ant, Formica polyctena (Hymenoptera, Formicidae). Ecology, 61 (1980) 238–244.

    Google Scholar 

  74. Horstmann K.: Zur Entstehung des Wärmezentrums in Waldameisennestern (Formica polyctena Förster; Hymenoptera, Formicidae). Zool. Beiträge, 33 (1990) 105–124.

    Google Scholar 

  75. Frouz J.: The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants. Ins. Soc. 47 (2000) 229–235.

    Article  Google Scholar 

  76. Ruttner, F.: Biogeography and Taxonomy of Honeybees. Springer, Berlin 1988.

    Google Scholar 

  77. Fahrenholz, L. Lamprecht, I. Schricker, B.: Thermal investigations of a honey bee colony: Thermoregulation of the hive during summer and winter and heat production of members of different castes. J. Comp. Physiol., B 159 (1989) 551–560.

    Google Scholar 

  78. Fahrenholz, L. Lamprecht, I. Schricker, B.: Calorimetric investigations of the different castes of honey bees, Apis mellifera carnica. J. Comp. Physiol., B 162 (1992) 119–130.

    Google Scholar 

  79. Schmolz, E. Dewitz, R. Schricker, B. Lamprecht, I.: Microcalorimetric investigations of energy metabolism in European (Apis mellifera carnica) and Egyptian (A.m.lamarckii) honeybees. J. Therm. Anal., 65 (2001) 131–140.

    Article  CAS  Google Scholar 

  80. Schmidt, J. O.: Mass action in honey bees: Alarm, swarming and the role of releaser pheromones. In: Vander Meer, R. (Ed.): Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites. Westview Press, Boulder Colorado, 1998.

    Google Scholar 

  81. Veith, H. J. Koeniger, N. Maschwitz, U.: 2-Methyl-3-butene-2-ol, a major component of the alarm pheromone of the hornet Vespa crabro. Naturwissenschaften, 71 (1984) 328–329.

    Article  CAS  Google Scholar 

  82. Moritz, R. F. A. Bürgin, H.: Group response to alarm pheromones in social wasps and the honeybee. Ethology, 76 (1987) 15–26.

    Google Scholar 

  83. Schmolz, E. Scholz, T. Lamprecht, I.: Alarmpheromone bei sozialen Insekten. Nachr. Chem. Techn. Lab., 47 (1999) 1095–1098.

    CAS  Google Scholar 

  84. Ono, M. Terabe, H. Hori, H. Sasaki, M.: Components of giant hornet alarm pheromone. Nature, 424 (2003) 637–638.

    Article  CAS  Google Scholar 

  85. Ono, M. Igarashi, E. Ohno, E. Sasaki, M.: Unusual thermal defense by a honeybee against mass attack by hornets. Nature, 377 (1995) 334–336.

    Article  CAS  Google Scholar 

  86. Boecking, O. Aumeier, P. Ritter, W. Wittmann, D.: Varroatosis-disease complex: is there any interrelation? Apidologie, 33 (2002) 486–487.

    Google Scholar 

  87. Schneider, P. Drescher, W.: Einfluß der Parasitierung durch die Milbe Varroa jacobsoni Oud. auf das Schlupfgewicht, die Gewichtsentwicklung, die Entwicklung der Hypopharynxdrüsen und die Lebensdauer von Apis mellifera L. Apidologie, 18 (1987) 101–110.

    Google Scholar 

  88. Garedew, A. Schmolz, E. Lamprecht, I. The energy and nutritional demand of the parasitic life of the mite Varroa destructor. Apidologie, in press.

    Google Scholar 

  89. Contzen, C. Garedew, A. Lamprecht, I. Schmolz, E.: Calorimetrical and biochemical investigations on the influence of the parasitic mite Varroa destructor on the development of honeybee brood, Thermochim. Acta, in press.

    Google Scholar 

  90. Garedew, A. Schmolz, E. Schricker, B. Polaczek, B. Lamprecht, I.: Energy metabolism of Varroa destructor mites and its implication on host vigour. J. Apicult. Sci. 46 (2002) 73–83.

    Google Scholar 

  91. Garedew, A. Schmolz, E. Schricker, B. Lamprecht, I.: The varroacidal action of propolis: a laboratory assay. Apidologie, 33 (2002) 41–50.

    Article  Google Scholar 

  92. Garedew, A. Schmolz, E. Lamprecht, I.: Effect of bee glue (propolis) on the calorimetrically measured heat production rate and metamorphosis of the greater wax moth Galleria mellonella, Thermochim. Acta, 413 (2004) 63–72.

    Article  CAS  Google Scholar 

  93. Garedew, A. Schmolz, E. Schricker, B. Lamprecht, I.: Microcalorimetric investigations of the action of propolis on Varroa jacobsoni mites. Thermochim. Acta, 382 (2002) 211–220.

    Article  CAS  Google Scholar 

  94. Garedew, A. Schmolz, E. Lamprecht, I.: Microcalorimetric and respirometric investigation of the effect of temperature on the antivarroa action of Propolis. Thermochim. Acta, 399 (2003) 171–180.

    Article  CAS  Google Scholar 

  95. Garedew, A. Schmolz, E. Lamprecht, I.: Microbiological and calorimetric studies on the antimicrobial actions of different extracts of propolis: an in vitro investigation. Thermochim. Acta, in press.

    Google Scholar 

  96. Cross, E. A. Mostafa, A. E.-S. Bauman, T. R. Lancaster, I. J.: Some aspects of energy transfer between the organ-pipe mud-dauber Trypoxylon politum and its araneid spider prey. Environ. Entomol. 7 (1978) 64–652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schmolz, E., Lamprecht, I. (2004). Thermal investigations on social insects. In: Lörinczy, D. (eds) The Nature of Biological Systems as Revealed by Thermal Methods. Hot Topics in Thermal Analysis and Calorimetry, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2219-0_10

Download citation

Publish with us

Policies and ethics