Skip to main content

Linear and Nonlinear Bound States in Curved Waveguides

  • Conference paper
Nonlinear Waves: Classical and Quantum Aspects

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 153))

  • 1153 Accesses

Abstract

Motivated from curved waveguides embedded in photonic crystals, we examine the effects of geometry in a “quantum channel” of parabolic form. We study the linear case and derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. The analytical results are used as initial conditions in direct numerical simulations of the nonlinear problem and localized excitations are found to persist, as well as to have interesting relaxational dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nonlinear Science at the Dawn of the 21st Century, Eds P.L. Christiansen, M.P. Sørensen, A.C. Scott, Lecture Notes in Physics (Springer, Berlin, Heidelberg, New York, 2000); Localization and Energy transfer in Nonlinear Systems, Eds L. Vázquez, R.S. Mackay, M.P. Zorzano (World Scientific, Singapore, 2003).

    Google Scholar 

  2. Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis (ed.), NATO Science Series C563, (Kluwer Academic Dordrecht, Boston, London, 2001).

    Google Scholar 

  3. A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, and J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).

    Article  ADS  Google Scholar 

  4. S. Noda, A. Alongkarn, and M. Imada, Nature (London), 407, 608 (2000).

    Article  ADS  Google Scholar 

  5. Yu.S. Kivshar, P.G. Kevrekidis and S. Takeno, Phys. Lett. A, 307, 287 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  7. Nanostructure Physics and Fabrication, Eds M.A. Reed and W.P. Kirks, (Academic Press, New York, 1989).

    Google Scholar 

  8. K. Ismail, S. Washburn, and K. Y. Lee, Appl. Phys. Lett. 59, 1998 (1991).

    Article  ADS  Google Scholar 

  9. R. Pulwey, M. Rahm, J. Biberger, and D. Weiss, IEEE Transactions on magnetics 37, 2076 (2001).

    Article  ADS  Google Scholar 

  10. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science, 289, 930 (2000).

    Article  ADS  Google Scholar 

  11. M. Klaui, C. A. F. Vaz, J. Rothman, J. A. C. Bland, W. Wernsdorfer, G. Faini, and E. Cambril, Phys. Rev. Lett. 90, 097202 (2003).

    Article  ADS  Google Scholar 

  12. R.L. Schult, D.G. Ravenhall and H.W. Wyld, Phys. Rev. B39, 5476 (1989).

    Article  ADS  Google Scholar 

  13. K.F. Berggren and Z.L. Ji, Phys. Rev. B43, 4760 (1991).

    Article  ADS  Google Scholar 

  14. M. Andrews and C.M. Savage, Phys. Rev. A 50, 4535 (1994).

    Article  ADS  Google Scholar 

  15. P. Exner and P. Seba, J. Math. Phys. 30, 2574 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Goldstone and R.L Jaffe, Phys. Rev. B 45, 14100 (1992).

    Article  ADS  Google Scholar 

  17. Yu. B. Gaididei and O.O. Vakhnenko, J. Phys.: Condens. Matter 6, 32229 (1994); O.O. Vakhnenko, Phys. Rev. B52, 17386 (1995).

    Article  Google Scholar 

  18. P. Exner and T. Ichinose, J. Phys. A 34, 1439 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. R.C.T. da Costa, Phys. Rev. A 23, 1982 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  20. P.C. Schuster and R.L. Jaffe, e-print hep-th/0302216.

    Google Scholar 

  21. P. Exner and D. Krejcirik, J. Phys. A: Math. Gen. 34, 5969 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. Encinosa and B. Etemadi, Phys. Rev. A 58, 77 (1998); M. Encinosa and L. Mott, Phys. Rev. A 68, 014102 (2003).

    Article  ADS  Google Scholar 

  23. T. Harayama, P. Davis and K. S. Ikeda, Phys. Rev. Lett. 82, 3803 (1999).

    Article  ADS  Google Scholar 

  24. A. Wallra, A.V. Ustinov, V.V. Kurin, I.A. Shereshevsky, and N.K. Vdovicheva, Phys. Rev. Lett. 84, 151 (2000).

    Article  ADS  Google Scholar 

  25. S.F. Mingaleev, Yu.S. Kivshar, and R.A. Sammut, Phys. Rev. E 62, 5777 (2000); S.F. Mingaleev and Yuri S. Kivshar Phys. Rev. Lett. 86, 5474 (2001).

    Article  ADS  Google Scholar 

  26. Yu. B. Gaididei, S.F. Mingaleev and P.L. Christiansen, Phys. Rev. E 62 R53 (2000); J. Phys.: Condens. Matter 13,1 (2001).

    Article  ADS  Google Scholar 

  27. A.E. Leanhardt, A.P. Chikkatur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle, and D.E. Pritchard, Phys. Rev. Lett. 89, 040401 (2002).

    Article  ADS  Google Scholar 

  28. Encylopaedia of Mathematics, vol. 3 (Kluwer Academic Publishers, Dordrecht, Boston, London, 1989), p. 159.

    Google Scholar 

  29. D. Jones, Generalized Functions (McGraw-Hill Publishing Company, London 1966).

    Google Scholar 

  30. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1972).

    MATH  Google Scholar 

  31. A. Smerzi, A. Trombettoni, P.G. Kevrekidis and A.R. Bishop, Phys. Rev. Lett. 89, 170402 (2002); F.S. Cataliotti, L. Fallani, F. Ferlaino, C. Fort, P. Maddaloni and M. Inguscio, New. J. Phys. 5, 71 (2003).

    Article  ADS  Google Scholar 

  32. Yu.S. Kivshar, D.E. Pelinovsky, Thierry Cretegny, and Michel Peyrard, Phys. Rev. Lett. 80, 5032 (1998); P.G. Kevrekidis and C.K.R.T. Jones, Phys. Rev. E 61, 3114 (2000).

    Article  ADS  Google Scholar 

  33. M. Johansson and S. Aubry, Phys. Rev. E 61, 5864 (2000); P.G. Kevrekidis and M.I. Weinstein, Physica D 142, 113 (2000); P.G. Kevrekidis and M.I. Weinstein, Math. Comp. Simul. 62, 65 (2003).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Gaididei, Y., Christiansen, P., Kevrekidis, P., Büttner, H., Bishop, A. (2004). Linear and Nonlinear Bound States in Curved Waveguides. In: Abdullaev, F.K., Konotop, V.V. (eds) Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, vol 153. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2190-9_8

Download citation

Publish with us

Policies and ethics