Skip to main content

Control of Matter Waves in Optical Lattices by Feshbach Resonance

  • Conference paper
  • 1144 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 153))

Abstract

Using the Feshbach resonance (FR) one can change a scattering length of two-body interactions and thus affect nonlinear dynamics of excitations in a Bose-Einstein condensate. The phenomenon is described by the Gross-Pitaevskii (GP) equation with varying nonlinearity. In this work we discuss the effect of variation of the nonlinearity on excitations in a BEC placed in an optical lattice. More specifically, we describe reductions of a three-dimensional (3D) GP equation to a 1D perturbed nonlinear Schrödinger (NLS) equation for different relations among parameters; discuss periodic solutions of the NLS equation; carry out numerical study of the dynamics of the NLS equation with a periodic and parabolic trap potentials. Special attention is paid to the process of generation of trains of bright and dark matter solitons from initially periodic waves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science, 269, 198 (1995); K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  2. B.P. Anderson and M. Kasevich, Science 282, 1686 (1998).

    Article  ADS  Google Scholar 

  3. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch and I. Bloch, Nature 415, 6867 (2002); M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch and T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001).

    Article  Google Scholar 

  4. C. Fort, F.S. Cataliotti, L. Fallani, F. Ferlaino, P. Maddaloni, and M. Inguscio, Phys. Rev. Lett. 90, 140405 (2003); O. Morsch, E. Arimondo: arXiv: condmat/0209034.

    Article  ADS  Google Scholar 

  5. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock, Phys. Rev. Lett. 83, 5198 (1999); J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, W.D. Phillips, Science 287, 97 (2000); B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, and E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001).

    Article  ADS  Google Scholar 

  6. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002); K.E. Strecker, G.B. Partridge, A.G. Truscott, and R.G. Hulet, Nature 417, 150 (2002).

    Article  ADS  Google Scholar 

  7. W. C. Stwalley, Phys. Rev. Lett. 37, 1628 (1976); E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47, 4114 (1993); A.J. Moerdijk, B.J. Verhaar, and A. Axelsson, Phys. Rev. A 51, 4852 (1995).

    Article  ADS  Google Scholar 

  8. S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, and W. Ketterle, Nature 392, 151 (1998); J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D.M. Stamper-Kurn, and W. Ketterle, Phys. Rev. Lett. 82, 2422 (1999); S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, and C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  9. F.Kh. Abdullaev, A.M. Kamchatnov, V.V. Konotop, and V.A. Brazhnyi, Phys. Rev. Let. 90, 230402 (2003).

    Article  ADS  Google Scholar 

  10. P.G. Kevrekidis, G. Theocharis, D.J. Frantzeskakis, and B.A. Malomed, Phys. Rev. Let. 90, 230401 (2003).

    Article  ADS  Google Scholar 

  11. Víctor M. Pérez-García, V.V. Konotop, and V.A. Brazhnyi (submitted); condmat/0311076.

    Google Scholar 

  12. E.P. Gross, J. Math. Phys. 4, 195 (1963); L.P. Pitaevskii, Zh. Eksp. Teor. Phys. 4, 451 (1961); F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  13. V.V. Konotop and M. Salerno, Phys. Rev. A 65, 021602 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  14. V.A. Brazhnyi and V.V. Konotop, Phys. Rev. A 68, 043613 (2003).

    Article  ADS  Google Scholar 

  15. B.B. Baizakov, V.V. Konotop and M. Salerno, J. Phys. B 35 5105 (2002).

    Article  ADS  Google Scholar 

  16. J.C. Bronski, L.D. Carr, B. Deconinck, and J.N. Kutz, K. Promislow, Phys. Rev. E 63, 036612 (2001); J.C. Bronski, L.D. Carr, R. Carratero-Gonzalez, B. Deconinck, J.N. Kutz, and K. Promislow, Phys. Rev. E 64, 056615 (2001).

    Article  ADS  Google Scholar 

  17. M. Abramovitz and I.A. Stegun: Handbook of Mathematical Functions (Dower, New York, 1965).

    Google Scholar 

  18. V.V. Konotop, Nonlinear Schrödinger equation with dissipation: Two models for Bose-Einsten condenstaes, in “Dissipative solitons”, ed. by N. Akhmeddev (Springer, in press).

    Google Scholar 

  19. L.D. Fadeev, L.A. Takhtajan: Hamiltonian Methods in the Theory of Solitons, (Springer Verlag, Berlin, 1987).

    Google Scholar 

  20. G. Boffetta and A.R. Osborne, J. Comput. Phys. 102, 252 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. F. Kh. Abdullaev, B. B. Baizakov, S. A. Darmanyan, V. V. Konotop, and M. Salerno, Phys. Rev. A 64 043606 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Brazhnyi, V., Konotop, V. (2004). Control of Matter Waves in Optical Lattices by Feshbach Resonance. In: Abdullaev, F.K., Konotop, V.V. (eds) Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, vol 153. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2190-9_21

Download citation

Publish with us

Policies and ethics