Skip to main content

Evidence of Abrupt Climate Change and the Development of an Historic Mercury Deposition Record Using Chronological Refinement of Ice Cores at Upper Fremont Glacier

  • Chapter
Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 9))

  • 287 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley, R.B., et al., 1997, Visual stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application, J. Geophys. Res., 102, 26,367–26,381.

    Google Scholar 

  • Alpers, C. N., Hunerlach, M. P. 2000, Mercury contamination from historic gold mining in California, U. S. Geol. Survey Fact Sheet 061-00. (http://ca.water.usgs.gov/mercury/fs06110.html).

  • Bindler, R., Renberg, I., Appleby, P.G., Anderson, N. J., Rose, N. L., 2001, Mercury accumulation rates and spatial patterns in lake sediments from west Greenland: A coast to ice margin transect, Environ. Sci. Technol. 35, 1736–1741.

    Article  Google Scholar 

  • Boutron, C.F., Candelone, J.P., Hong, S.M., 1994, Past and recent changes in the large-scale tropospheric cycles of leads and other heavy metals as documented in Antarctic and Greenland snow and ice, Geochim. Cosmochim. Acta. 58, 3217–3225.

    Article  Google Scholar 

  • Boutron, C.F., Vandal, G.M., Fitzgerald, W.F., Ferrari, C.P., 1998, A forty year record of mercury in central Greenland snow, Geophys. Res. Lett. 25, 3315–3318.

    Article  Google Scholar 

  • Brimblecombe, P., Tranter, M., Abrahams, P.W., Blackwood, I., Davies, T.D., and Vincent, C.E., 1985, Relocation and preferential elution of acidic solute through the snowpack of a small remote, high altitude Scottish catchment, Annals of Glaciology, 7, 141–147.

    Google Scholar 

  • Cecil, L.D., and Vogt, S., 1997, Identification of bomb-produced chlorine-36 in mid-latitude glacial ice of North America, Nuclear Instruments and Methods in Physics Research B, 123, 287–289.

    Google Scholar 

  • Clausen, H.B., Hammer, C.U., Christensen, J., Hvidber, C.S., Dahl-Jensen, D., Legrand, M., and Steffensen, J.P., 1995, 1250 years of global volcanism as revealed by central Greenland ice cores. Ice Core Studies of Global Biogeochemical Cycles, Annecy, France, R. Delmas (ed.), Nato Advanced Sciences Institute Series, 1, 30, 175–194.

    Google Scholar 

  • Dansgaard, W., et al., 1993, Evidence for general instability of past climate from a 250 yr ice-core record, Nature, 364, 218–220.

    Article  Google Scholar 

  • Delmas, R.J., Kirchner, S., Palais, J.M., Petit, J.R., 1992, 1000 years of explosive volcanism recorded at the South Pole, Tellus, Series B: Chem. Phys. Met. 44, 335–350.

    Google Scholar 

  • Engstrom, D. R., Swain, E. B., 1997, Recent declines in atmospheric mercury deposition in the upper Midwest. Environ. Sci. Technol., 31, 960–967.

    Article  Google Scholar 

  • Fishman, M.J., and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments, U.S. Geological Survey Techniques of Water-Resources Investigations, 3rd ed. Book 5, Chapter A1.

    Google Scholar 

  • Fruchter, J. S. et. al., 1980, Mount St. Helens ash from the 18 May 1980 eruption: Chemical, physical, mineralogical, and biological properties, Science. 1980, 209, 1116–1125.

    Google Scholar 

  • Hammer, C.U., Acidity of Polar Ice Cores in Relation to Absolute Dating, Past Volcanism, and Radio-echoes, J. Glaciology, 25, 359–372.

    Google Scholar 

  • Hanisch, C., 1998, Where is the mercury coming from?, Science, Technol./News, 176A–179A.

    Google Scholar 

  • Heyvaert, A. C., Reuter, J. E., Slotton, D. G., Goldman, C. R., 2000, Paleolimnological reconstruction of historical lead and mercury deposition at Lake Tahoe, California-Nevada, Environ. Sci. Technol. 34, 3588–3597.

    Article  Google Scholar 

  • Hurley, J.P., Krabbenhoft, D.P., Babiarz, C.L., and Andren, A.W., 1994, Cycling of mercury across the sediment-water interface in seepage lakes, in Baker, L.A. ed., Environ. Chem. Lakes and Reservoirs: Advances in Chemistry Series, ACS., 426–449.

    Google Scholar 

  • Johnsen, S.J., et al., 1997, The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability, J. Geophys. Res., 102, 26,397–26,410.

    Article  Google Scholar 

  • Jouzel, J., et al., 1997, Validity of the temperature reconstruction from water isotopes in ice cores, J. Geophys Res, 102, 26,471–26,487.

    Article  Google Scholar 

  • Kohno, M., Fugii, Y, Kusakabe, M., Fukuoka, T., 1999, The last 300-year volcanic signals recorded in an ice core from site H15, Antarctica, J. Japanese Soc. Snow and Ice. 61, 13–24.

    Google Scholar 

  • LaLonde, J.D., Poulain, A.J., Amyot, M., 2002, The role of mercury redox reactions in snow on snow-to-air mercury transfer, Environ. Sci. Technol. 36, 174–178.

    Google Scholar 

  • Lamb, H.H., 1970, Volcanic dust in the atmosphere, Philosophical Transactions of the Royal Society of London, 266, 425–533.

    Google Scholar 

  • Lepel, E. A., Stefansson, K. M., Zoller, W. H., 1976, The enrichment of volatile elements in the atmosphere by volcanic activity: Augustine Volcano, J. Geophys. Res. A. 1978, 83, 6213–6220.

    Google Scholar 

  • Lorey, P., Driscoll, C. T., 1999, Historical trends of mercury deposition in Adirondack lakes, Environ. Sci. Technol., 33, 718–722.

    Article  Google Scholar 

  • Lyons, W.B., Mayewski, P.A., Spencer, M.J., Twickler, M.S., and Graedel, T.E., 1990, A northern hemispheric volcanic chemistry record (1869–1984) and climatic implications using a South Greenland ice core, Annals of Glaciology, 14, 176–182.

    Google Scholar 

  • Marston, R.A., Pochop, L.O., Kerr, G.L., Varuska, M.L, and Veryzer, D.J., 1991, Recent glacier changes in the Wind River Range, Wyoming, Physical Geography, 12, 115–123.

    Google Scholar 

  • Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., and Prentice, M., 1997, Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series, J. Geophys. Res., 102, 26,345–26,366.

    Article  Google Scholar 

  • Meger, S. A., 1986, Polluted precipitation and the geochronology of mercury deposition in lake sediment of northern Minnesota, Water Air Soil Pollut. 30, 411–419.

    Article  Google Scholar 

  • Meier, M., 1998, Eos, Trans Amer. Geo. Union, Langbein Lecture. 79, S80.

    Google Scholar 

  • Morel, F. M. M., Kraepiel, A. M. L., Amyot, M., 1998, The chemical cycle and bioaccumulation of Mercury, Annu. Rev. Ecol. Syst., 29, 543–566.

    Article  Google Scholar 

  • Naftz, D. L., et al., 1996, Little Ice Age evidence from a South-Central North American ice core, U.S.A., Arctic and Alpine Res., 28, 1, 35–41.

    Google Scholar 

  • Naftz, D. L., 1993, Ice core records of the chemical quality of atmospheric deposition and climate from mid-latitude glaciers, Wind River Range, Wyoming, Colorado School of Mines, Ph.D. Thesis, 204 p.

    Google Scholar 

  • Naftz, D.L., Schuster, P.F., and Reddy, M.M., 1994, Assessment of spatial variability of major-ion concentrations and DEL Oxygen-18 values in surface snow, Upper Fremont Glacier, Wyoming, U.S.A., Nordic Hydrology, 25, 371–388.

    Google Scholar 

  • National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Accessed January 15, 2001, at URL http://nadp.sws.uiuc.edu/nadpdata/mdnsites.asp.

  • Newhall, C.G. and Self, S., 1982, The Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism, J. Geophys. Res., 87, 1231–1238.

    Google Scholar 

  • Norton, S. A., Evans, G. C., and Kahl, J. S., 1997, Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic big heath bog and to nearby Sargent Mt. Pond, Maine, U.S.A., Water Air, Soil Pollut., 100, 271–286.

    Article  Google Scholar 

  • Nriagu, J. O., 1994, Mercury pollution from the past mining of gold and silver in the Americas, Sci. Total Environ., 149, 167–181.

    Article  Google Scholar 

  • Pacyna J.M., Pacyna, E.G., 2001, Environ. Rev., 9, 269–298.

    Article  Google Scholar 

  • Phelan, J. M., Finnegan, D. L., Ballantine, D. S., and Zoller, W. H., 1982, Airborne aerosol measurements in the quiescent plume of Mount St. Helens: September, 1980, Geophys. Res. Lett., 9, 1093–1096.

    Google Scholar 

  • Rampino, M.R. and Self, S., 1982, Historic Eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols and climatic impact, Quat. Res., 18, 127–143.

    Article  Google Scholar 

  • Schuster, P. F., White, D. E., Naftz, D. L., and Cecil, L. D., 2000, J. Geophys. Res., 105, 4657–4666.

    Article  Google Scholar 

  • Self, S., 1992, Krakatau revisited: The course of events and interpretation of the 1883 eruption, GeoJournal, 28, 109–121.

    Article  Google Scholar 

  • Self, S. and Rampino, M. R., 1981, The 1183 eruption of Krakatau, Nature, 294, 699–704.

    Article  Google Scholar 

  • Siegel, B. Z. and Siegel, S. M., 1978, Mercury emission in Hawaii: Aerometric study of the Kalaua eruption of 1977, Environ. Sci. Technol, 12, 1036–1039.

    Google Scholar 

  • Sigurdsson, H and Carey, S. N., 1987, Dynamics of the 1815 Tambora eruption, Eos, Trans Amer. Geo. Union, 68, 1549–1550.

    Google Scholar 

  • Stothers, R. B., 1984, The great eruption of Tambora and its aftermath, Science, 224, 1191–1198.

    Google Scholar 

  • Susong, D. D., Abbott, M., and Krabbenhoft, D. P., 1999, Reconnaissance of mercury concentrations in snow from the Teton and Wasatch Ranges to assess the atmospheric deposition of mercury from an urban area, Eos, Trans Amer. Geo. Union. 1999, 80, H12b–06.

    Google Scholar 

  • Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A., and Brezonik, P. L., 1992, Increasing rates of atmospheric mercury deposition in midcontinental North America, Science, 257, 784–787.

    Google Scholar 

  • Taylor, K.C, et al., 1993a, The ‘flickering switch’ of late Pleistocene climate change, Nature, 361, 432–436.

    Google Scholar 

  • Taylor, K.C., Alley, R.B., Lamorey, G.W., and Mayewski, P.A., 1997, Electrical measurements on the Greenland Ice Sheet Project 2 core, J. Geophys. Res., 102, 26,511–26,517.

    Google Scholar 

  • Taylor, K.C., et al., 1992, Ice-core dating and chemistry by direct-current electrical conductivity, J. Glaciology, 38, p325–252.

    Google Scholar 

  • Taylor, K.C., et.al., 1993b, Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores, Nature, 366, 549–552.

    Google Scholar 

  • Taylor, K.C., Mayewski, P.A., Twickler, M.S., and Witlow, S.I., 1996, Biomass burning recorded in the GISP2 ice core: A record from Eastern Canada? The Holocene 6,1, 1–6.

    Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., and Koci, B. R., 1985, Science, 229, 971

    Google Scholar 

  • USEPA. 1997, Mercury Study Report to Congress, EPA-452-97-003-010, Office of Air and Radiation.

    Google Scholar 

  • Unni, C., Fitzgerald, W., Settle, D., Gill, B. R., Patterson, C., and Duce, R., 1978, The impact of volcanic emissions on the global atmospheric cycles of sulfur, mercury and lead, Eos, Trans Amer. Geo. Union, 59, 1223.

    Google Scholar 

  • USEPA Method 1631, 1999, Revision B Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division (4303), Washington, D.C., January.

    Google Scholar 

  • USEPA Method 1669, 1996, Method for sampling ambient water for the determination of metals at EPA ambient criteria levels. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division (4303), Washington, D.C., January.

    Google Scholar 

  • USEPA, 1990, Guidelines establishing test procedures for the analysis of pollutants. (Appendix B, Part 136, Definitions of procedures for the determination of a method detection limit-Revision 1.11. (Revised July, 1999), 537–539

    Google Scholar 

  • Vandal, G. M., Fitzgerald, W. F., Boutron, C. F., and Candelone, J. P., 1993, Variations in mercury deposition to Antarctica over the past 34,000 years, Nature, 362, 621–623.

    Article  Google Scholar 

  • Varekamp, J. C. and Buseck, P. R., 1986, Global mercury flux from volcanic and geothermal sources, Appl. Geochem, 1, 65–73.

    Article  Google Scholar 

  • Varekamp, J. C. and Buseck, P. R., 1981, Mercury emissions from Mount St. Helens during September 1980, Nature, 293, 555–556.

    Article  Google Scholar 

  • Wagenbach, D., 1989, Environmental records in alpine glaciers, in H. Oescher and C.C. Langway, Jr., eds., The Environmental Record in Glaciers and Ice Sheets, New York, John Wiley, 69–83.

    Google Scholar 

  • Walpole, R.E. and Myers, R.H., 1985, Probability and Statistics for Engineers and Scientists, Macmillan Publishing Company, 3rd edition, 639 p.

    Google Scholar 

  • White, D.E., White, J.W.C., Steig, E.J., and Barlow, L.K., 1997, Reconstructing annual and seasonal climatic responses from volcanic events since A.D. 1270 as recorded in deuterium signal from the Greenland Ice Sheet Project 2 ice core, J. Geophys. Res., 102, 19,683–19,694.

    Google Scholar 

  • White, J.W.C., et al., 1997, The climate signal in the stable isotopes of Summit, Greenland: Results of comparisons with modern climate observations, J. Geophys. Res., 102, p. 26,425–26,439.

    Google Scholar 

  • Zielinski, G.A., et al., 1997, Volcanic Aerosol Records and Tephrochronology of the Summit, Greenland, Ice Cores, J. Geophys. Res., 102, 26,625–26,640.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schuster, P.F., Naftz, D.L., Cecil, L.D., Green, J.R. (2004). Evidence of Abrupt Climate Change and the Development of an Historic Mercury Deposition Record Using Chronological Refinement of Ice Cores at Upper Fremont Glacier. In: DeWayne Cecil, L., Green, J.R., Thompson, L.G. (eds) Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers. Developments in Paleoenvironmental Research, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2146-1_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2146-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2145-9

  • Online ISBN: 978-1-4020-2146-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics