Skip to main content

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 7))

Summary

In this chapter we discussed image calibration, filtering, and processing techniques, which are used to prepare an image for subsequent data extraction and analysis. Size measurements from a digital image are calibrated by imaging objects with a known size. Pixel intensity is a measure for the composition of the imaged object and can be calibrated by imaging objects with known composition. Methods depend on the type of material and imaging technique. We discuss colour calibration, as colour is one of the most widely used types of data in image analysis. Filtering is performed on an image to remove artefacts that are unrelated to the object of study. The challenge is to find the best filter, one that removes all noise with minimum change to the actual information in the image. Described are techniques to remove the effects caused by uneven illumination during imaging, and methods to filter camera related noise. Image processing involves modification and/or enhancement of the image in such a way that the required numerical data can be extracted more easily. Processing techniques that are outlined include edge detection, segmentation, and processing of binary images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASTM Committee E-4, 2002. Standard Guide for Calibrating Reticles and Light Microscope Magnification, Designation E 1951-01, Annual Book of ASTM Standards, Vol. 03.01: 1182–1188.

    Google Scholar 

  • ASTM Committee F-1, 1997. Standard Practice for Preparing an Optical Microscope for Dimensional Measurements. Annual Book of ASTM Standards, Designation F 728-81, Vol. 10.05: 325–329.

    Google Scholar 

  • ASTM Committee E-4, 1993. Standard Practice for Calibrating the Magnification of a Scanning Electron Microscope, Designation E 766-93, Annual Book of ASTM Standards, Vol. 03.01: 614–61.

    Google Scholar 

  • Berns R.S. 2000. Billmeyer and Saltzman Principles of Color Technology. Wiley, New York, 247 pp.

    Google Scholar 

  • Boespflug X., Ross N., Long B.F.N. and Dumais J.F. 1994. Tomodensitométrie axiale: relation entre ľintensité tomographique et la densité de la matière. Can. J. Earth Sci. 31: 426–434.

    Google Scholar 

  • Bollmann J., Henderiks J. and Brabec B. 2002. Calibration of Gephyrocapsa coccolith abundance in Holocene sediments for paleotemperature assessment. Paleoceanography 17: 7-1 to 7-9.

    Article  Google Scholar 

  • Davis J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons, New York, 646 pp.

    Google Scholar 

  • Ehrlich R., Kennedy S.K., Crabtree S.J. and Cannon R.L. 1984. Petrographic image-analysis 1. Analysis of reservoir pore complexes. J. Sed. Petrol. 54: 1365–1378.

    Google Scholar 

  • Ehrlich R., Crabtree S.J., Horkowitz K.O. and Horkowitz J.P. 1991. Petrography and reservoir physics 1. Objective classification of reservoir porosity. AAPG Bull.-Am. Assoc. Petrol. Geol. 75: 1547–1562.

    Google Scholar 

  • Fueten F. 1997. A computer-controlled rotating polarizer stage for the petrographic microscope. Comp. Geosci. 23: 203–208.

    Google Scholar 

  • Gonzalez R.C and Woods R.E. 2002. Digital Image Processing. Addison-Wesley Pub Co, 793 pp.

    Google Scholar 

  • Hecht E. 1998. Optics. Addision Wesley, Bonn, 717 pp.

    Google Scholar 

  • Huang T.S., Yang G.J. and Tang G.Y. 1979. A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. ASSP-27: 13–18.

    Google Scholar 

  • ITU-R. 2002. Recommendation BT.709-4: Parameter Values for the HDTV Standards for Production and International Programme Exchange. International Telecommunication Union-Radiocommunication Sector, Geneva, 32 p.

    Google Scholar 

  • Jongmans D., Pirard E. and Marsh S. 2001. Geological application of digital imaging. Comp. Geosci. 27: 1015–1017.

    Google Scholar 

  • Kirsch R. 1971. Computer determination of the constituent structures of biological images. Comp. Biomed. Res. 4: 315–328.

    Article  Google Scholar 

  • Norris R.D., Kroon D. and Klaus A. 1998. Proc. ODP, Init. Repts., 171B, College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Lee R.E. 1993. Scanning Electron Microscopy and X-ray Microanalysis. Prentice Hall, Englewood Cliffs, New Jersey, 458 pp.

    Google Scholar 

  • Pirard E. and Bertholet V. 2000. Segmentation of multispectral images in optical metallography. Rev. Metall.-Cah. Inf. Techn. 97: 219–227.

    Google Scholar 

  • Russ J.C. 1995. Thresholding images. J. Comp.-Assist. Microsc. 7: 141–164.

    Google Scholar 

  • Russ J.C. 1999. The Image Processing Handbook. CRC Press, Boca Raton, 771 pp.

    Google Scholar 

  • Sahoo P.K., Soltani S., Wong A.K.C. and Chen Y.C. 1988. A Survey of Thresholding Techniques. Comp. Vis. Graph. Image Process. 41: 233–260.

    Google Scholar 

  • Schaaf M. and Thurow J. 1994. A fast and easy method to derive highest-resolution time-series data sets from drillcores and rock samples. Sed. Geol. 94: 1–10.

    Article  Google Scholar 

  • Serra J. 1982. Image Analysis and Mathematical Morphology. Academic Press, London, 610 pp.

    Google Scholar 

  • Seul M., O’Gorman L. and Sammon M.J. 2000. Practical Algorithms for Image Analysis: Description, Examples, and Code. Cambridge University Press, Cambridge, New York, 295 pp.

    Google Scholar 

  • SMPTE RP 177–1993 1993. Derivation of Basic Television Color Equations. Society of Motion Picture and Television Engineers, White Plains, NY, 4 pp.

    Google Scholar 

  • Sobel I. 1970. Camera Models and Machine Perception. AIM-21. Stanford Artificial Intelligence Lab, Palo Alto.

    Google Scholar 

  • Starkey J. and Samantaray A.K. 1991. An evaluation of noise reduction filters, with particular reference to petrographic images. J. Comp.-Assist. Microsc. 3: 171–188.

    Google Scholar 

  • Tovey N.K. and Krinsley D.H. 1991. Mineralogical mapping of scanning electron-micrographs. Sed. Geol. 75: 109–123.

    Article  Google Scholar 

  • van den Berg E.H., Meesters A., Kenter J.A.M. and Schlager W. 2002. Automated separation of touching grains in digital images of thin sections. Comp. Geosci. 28: 179–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Francus

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Nederbragt, A.J., Francus, P., Bollmann, J., Soreghan, M.J. (2005). Image Calibration, Filtering, and Processing. In: Francus, P. (eds) Image Analysis, Sediments and Paleoenvironments. Developments in Paleoenvironmental Research, vol 7. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2122-4_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2122-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2061-2

  • Online ISBN: 978-1-4020-2122-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics