Skip to main content

Form Constraints in Motion Integration, Segmentation and Selection

  • Chapter
Seeing, Thinking and Knowing

Part of the book series: Theory and Decision Library A: ((TDLA,volume 38))

Conclusion

The present paper summarized some of the numerous studies that convege to support the idea that geometrical relationships between visual elements or “tokens”, as initially stated by the Gestaltists, play a fundamental role in the perceptual organisation of form and motion. Recent developments in neuroscience and the available anatomical and physiological evidence suggest that the neuronal circuity described in the primary visual cortex possesses some of the properties needed to process the geometrical characteristics of the retinal inputs. This is certainly not the whole story, however: many other aspects of form and motion, that are selectively processed in areas distributed along the dorsal and ventral pathways, may also play a role. In addition, attention and prior knowledge could modulate perceptual grouping, although the present experiments failed to demonstrate such influence. Finally, the fact that motion can by itself provide sufficient information to segregate and recognise the form of objects indicates that interactions between form and motion are bi-directional. Future studies will with no doubt shed light on the intricate relationships between the processing of motion and form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E. & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300, 523–525.

    Article  PubMed  Google Scholar 

  • Campbell F. W. & Robson J.G., (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197, 551–566.

    PubMed  Google Scholar 

  • De Valois, R.L. & De Valois, K.K. (1988). Spatial vision. Oxford University Press.

    Google Scholar 

  • Fennema, C.L. & Thompson, W.B. (1979). Velocity determination in scenes containing several moving objects. Computer Graphics and Image Processing, 9, 301–315.

    Article  Google Scholar 

  • Field DJ, Hayes A, Hess RF (1993). Contour integration by the human visual system: evidence for a local “association field”. Vision Research, 33, 173–93.

    Article  PubMed  Google Scholar 

  • Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W. & Van Essen, D. C. (1996). Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. Journal of Neurophysiology, 76, 2718–2739.

    PubMed  Google Scholar 

  • Gilbert CD (1992). Horizontal integration and cortical dynamics. Neuron, 9, 1–13.

    Article  PubMed  Google Scholar 

  • Henry, G.H., Bishop, P.O. Tupper, R.M. & Dreher, B. (1974). Orientation axis and direction as stimulus parameters for striate cells. Vision Research, 14, 767–777.

    Article  PubMed  Google Scholar 

  • Hartline, H.K. (1940). The receptive field of optic nerve fibers. Am. J. Physiol., 130, 690–699.

    Google Scholar 

  • Hubel, D. & Wiesel, T. (1968). Receptive fields and functional architecture of the monkey striate cortex. Journal of Physiology, 195, 215–243.

    PubMed  Google Scholar 

  • Johansson G. (1950). Configurations in event perception. Uppsala, Almqvist & Wiksell.

    Google Scholar 

  • Kanizsa G. (1976) Subjective contours. Scientific American 234(4):48–52.

    PubMed  Google Scholar 

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15, 843–56.

    Article  PubMed  Google Scholar 

  • Kellman PJ, Shipley TF (1991). A theory of visual interpolation in object perception. Cognitive Psychology, 23, 141–221.

    Article  PubMed  Google Scholar 

  • Koffka, K. (1935). Principles of Gestalt Psychology. New York: Harcourt Brace.

    Google Scholar 

  • Kohler, W. (1929). Gestalt Psychology, New-York, Liveright.

    Google Scholar 

  • Komatsu H, Murakami I, Kinoshita M. (1996). Surface representation in the visual system. Brain Res Cogn Brain Res., 5, 97–104.

    PubMed  Google Scholar 

  • Kovacs I, Julesz B. (1994). Perceptual sensitivity maps within globally defined visual shapes. Nature, 370, 644–6.

    PubMed  Google Scholar 

  • Lamme VA (1995). The neurophysiology of figure-ground segregation in primary visual cortex. The Journal of Neuroscience, 15, 1605–15.

    PubMed  Google Scholar 

  • Lorenceau, J. & Alais, D. (2001). Form constraints in motion binding. Nature Neuroscience, 4, 7, 745–751.

    Article  PubMed  Google Scholar 

  • Lorenceau, J. & Shiffrar, M., (1992) The influence of terminators of motion integration across space. Vision Research, 32,2, 263–273.

    Article  PubMed  Google Scholar 

  • Metzger W. (1934). Betrachtungen uber phenomenal identitat. Psychologische Forschung, 19, 1–60.

    Google Scholar 

  • Piotrowski L.N. & Campbell, F. W. (1982). A demonstration of the importance and flexibility of spatial-frequency amplitude and phase. Perception, 11, 337–346.

    PubMed  Google Scholar 

  • Polat U, Sagi D (1994). The architecture of perceptual spatial interactions. Vision Research, 34. 73–8.

    Article  PubMed  Google Scholar 

  • Skiera G, Petersen D, Skalej M & Fahle M (2000). Correlates of figure-ground segregation in fMRI. Vision Research, 40, 2047–56.

    Article  PubMed  Google Scholar 

  • Sugita Y (1999). Grouping of image fragments in primary visual cortex. Nature, 401,269–272.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C. & Deyoe, E. A. (1995). Concurrent processing in primate visual cortex. In M. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 383–400). MIT Press.

    Google Scholar 

  • Wertheimer, M. (1912). Experimentelle stuidien uber das Sehen von Beuegung. Zeitschrift fuer Psychologie, 61, 161–265.

    Google Scholar 

  • Wilson H.R. & Kim J. (1994) A model for motion coherence and transparency. Visual Neuroscience, 11, 1205–1220.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lorenceau, J. (2004). Form Constraints in Motion Integration, Segmentation and Selection. In: Carsetti, A. (eds) Seeing, Thinking and Knowing. Theory and Decision Library A:, vol 38. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2081-3_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2081-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2080-3

  • Online ISBN: 978-1-4020-2081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics