Skip to main content

Neural Models of Seeing and Thinking

  • Chapter
Seeing, Thinking and Knowing

Part of the book series: Theory and Decision Library A: ((TDLA,volume 38))

  • 436 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.F., Varela, J.A., Sen, K., and Nelson, S.B. (1997). Synaptic depression and cortical gain control. Science, 275, 220–224.

    Article  PubMed  Google Scholar 

  • Arrington, K.F. (1994). The temporal dynamics of brightness filling-in. Vision Research, 34, 3371–3387.

    Article  PubMed  Google Scholar 

  • Bradley, D.R. and Dumais, S.T. (1984). The effects of illumination level and retinal size on the depth stratification of subjective contour figures. Perception, 13, 155–164.

    PubMed  Google Scholar 

  • Brown, J.M. and Weisstein, N. (1988). A spatial frequency effect on perceived depth. Perception and Psychophysics, 44, 157–166.

    PubMed  Google Scholar 

  • Brown, J.M. and Weisstein, N. (1988). A spatial frequency effect on perceived depth. Perception and Psychophysics, 43, 53–56.

    PubMed  Google Scholar 

  • Cohen, M.A. and Grossberg, 5. (1984). Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance. Perception and Psychophysics, 36, 428–456.

    PubMed  Google Scholar 

  • De Yoe, E.A. and Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience, 11, 219–226.

    Google Scholar 

  • Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A.C., and Suarez, H.H. (1995). Recurrent excitation in neocortical circuits. Science, 269, 981–985.

    PubMed  Google Scholar 

  • Egusa, H. (1983). Effects of brightness, hue, and saturation on perceived depth between adjacent regions in the visual fields. Perception, 12, 167–175.

    PubMed  Google Scholar 

  • Elder, J.H. and Zucker, S.W. (1998). Evidence for boundary-specific grouping. Vision Research, 38, 143–152.

    Article  PubMed  Google Scholar 

  • Fahle, M. and Westheimer, G. (1995). On the time-course of inhibition in the stereoscopic perception of rows of dots. Vision Research, 35, 1393–1399.

    PubMed  Google Scholar 

  • Field, D.J., Hayes, A., and Hess, R.F., (1993). Contour integration by the human visual system: Evidence for a local “association field”. Vision Research, 33, 173–193.

    Article  PubMed  Google Scholar 

  • Francis, G. (1997). Cortical dynamics of lateral inhibition: Metacontrast masking. Psychological Review, 104, 572–594.

    Article  PubMed  Google Scholar 

  • Francis, G. & Grossberg, S. (1996a). Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces. Perception, 25, 543–567.

    PubMed  Google Scholar 

  • Francis, G. & Grossberg, S. (1996b). Cortical dynamics of form and motion integration: Persistence, apparent motion, and illusory contours. Vision Research, 36, 149–173.

    Article  PubMed  Google Scholar 

  • Francis, G., Grossberg, S., and Mingolla, E. (1994). Cortical dynamics of feature binding and reset: Control of visual persistence. Vision Research, 34, 1089–1104.

    Article  PubMed  Google Scholar 

  • Gogel, W.C. (1965). Equidistance tendency and its consequences. Psychological Bulletin, 64, 153–163.

    PubMed  Google Scholar 

  • Grossberg, 5. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 217–257.

    Google Scholar 

  • Grossberg, 5. (1976). Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23, 87–202.

    Article  Google Scholar 

  • Grossberg, 5. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1–5 1.

    PubMed  Google Scholar 

  • Grossberg, 5. (1984). Outline of a theory of brightness, color, and form perception. In E. Degreef and J. van Buggenhaut (Eds.), Trends in mathematical psychology. Amsterdam: North-Holland.

    Google Scholar 

  • Grossberg, 5. (1987). Cortical dynamics of three-dimensional form, color, and brightness perception: II. Binocular theory. Perception and Psychophysics, 41, 117–158.

    PubMed  Google Scholar 

  • Grossberg, 5. (1994). 3-D vision and figure-ground separation by visual cortex. Perception and Psychophysics, 55, 48–120.

    PubMed  Google Scholar 

  • Grossberg, 5. (1997). Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. Psychological Review, 104, 618–658.

    Article  PubMed  Google Scholar 

  • Grossberg, S., (1999a). A comment on “Assimilation of achromatic color cannot explain the brightness effects of the achromatic neon effect” by Marc K Albert. Perception, 28, 1291–1302.

    PubMed  Google Scholar 

  • Grossberg, S. (1999b). How does the, cerebral cortex work? Leaming, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision, 12, 163–186.

    PubMed  Google Scholar 

  • Grossberg, S. (1999c). The link between brain learning, attention, and consciousness. Consciousness and Cognition, 8, 1–44.

    Article  PubMed  Google Scholar 

  • Grossberg, S. and Howe, P.D.L. (2002). A laminar cortical model of stereopsis and 3-D surface perception. Submitted for publication.

    Google Scholar 

  • Grossberg, S. and Kelly, F. (1999). Neural dynamics of binocular brightness perception. Vision Research, 39, 3796–3816.

    PubMed  Google Scholar 

  • Grossberg, S. and Mcloughlin, N. (1997). Cortical dynamics of 3-D surface perception: Binocular and half-occluded scenic images. Neural Networks, 10, 1583–1605.

    Article  Google Scholar 

  • Grossberg, S. and Mingolla, E. (1985a). Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review, 92, 173–211.

    Article  PubMed  Google Scholar 

  • Grossberg, S. and Mingolla, E. (1985b). Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations. Perception and Psychophysics, 38, 141–171.

    PubMed  Google Scholar 

  • Grossberg, S. and Pessoa, L. (1998). Texture segregation, surface representation, and figure-ground separation. Vision Research, 38, 2657–2684.

    Article  PubMed  Google Scholar 

  • Grossberg, S. and Raizada, R.D.S. (2000). Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex. Vision Research, 40, 1413–1432.

    Article  PubMed  Google Scholar 

  • Grossberg, S. and Todorovic, D. (1988). Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena. Perception and Psychophysics, 43, 241–277.

    PubMed  Google Scholar 

  • Grossberg, S. and Williamson, J.R. (2001). A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning. Cerebral Cortex, 11, 37–58.

    Article  PubMed  Google Scholar 

  • Grunewald, A. and Grossberg, 5. (1998). Self-organization of binocular disparity tuning by reciprocal corticogeniculate interactions. Journal of Cognitive Neuroscience, 10, 199–215.

    Article  PubMed  Google Scholar 

  • Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.

    PubMed  Google Scholar 

  • Helmholtz, H.L.F. Von (1910/1925). Treatise on Physiological Optics. Dover Press.

    Google Scholar 

  • Hess, R.F., Dakin, S.C., and Field, D.J. (1998). The role of “contrast enhancement” in the detection and appearance of visual contours. Vision Research, 38, 783–787.

    PubMed  Google Scholar 

  • Howe, P.D.L. and Grossberg, 5. (2001). Laminar cortical circuits for stereopsis and surface depth perception. Society for Neuroscience Abstracts, 27, 164.17

    Google Scholar 

  • Hubel, D.H. and Livingstone, M.S. (1985). Complex-unoriented cells in a subregion of primate area 18. Nature, 315, 325–327.

    Article  PubMed  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London (B), 198, 1–59.

    Google Scholar 

  • Julesz, B. and Schumer, R.A. (1981). Early visual perception. Annual Review of Psycholgy, 32, 572–627.

    Google Scholar 

  • Kanizsa, G. (1974). Contours without gradients or cognitive contours. Italian Journal of Psychology, 1, 93–113.

    Google Scholar 

  • Kanizsa, G. (1985). Seeing and thinking. Revista di Psicologia, 49, 7–30. Praeger/Greenwood.

    Google Scholar 

  • Kelly, F. and Grossberg, 5. (2000). Neural dynamics of 3-D surface perception: Figure-ground separation and lightness perception. Perception and Psychophysics, 62, 1596–1618.

    PubMed  Google Scholar 

  • Lamme, V.A.F., Rodriguez-Rodriguez, V., and Spekreijse, H. (1999). Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406–413.

    Article  PubMed  Google Scholar 

  • Land, E.H. (1977). The retinex theory of color vision. Scientific American, 237, 108–128.

    PubMed  Google Scholar 

  • Mcloughlin, N.P and Grossberg, 5. (1998). Cortical computation of stereo disparity. Vision Research, 38, 91–99.

    Article  PubMed  Google Scholar 

  • Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.

    PubMed  Google Scholar 

  • Murphy, P.C., Duckett, S.G., and Sillito, A.M. (1999). Feedback Connections to the Lateral Geniculate Nucleus and Cortical Response Properties. Science, 286, 1552–1554.

    Article  PubMed  Google Scholar 

  • Nakayama, K. and Grossberg, 5. (1990). Da Vinci stereopsis: Depth and subjective occluding contours from unpaired image points. Vision Research, 30, 1811–1825.

    Article  PubMed  Google Scholar 

  • Nakayama, K., Shimojo, S., and Ramachandran, V.S. (1990). Transparency: Relation to depth, subjective contours, luminance, and neon color spreading. Perception, 19, 497–513.

    PubMed  Google Scholar 

  • Nakayama, K., Shimojo, S., & Silverman, G.H. (1989) Stereoscopic depth: Its relation to image segmentation, grouping and the recognition of occluded objects. Perception, 18, 55–68.

    PubMed  Google Scholar 

  • Olson, S.J. and Grossberg, 5. (1998). A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance. Neural Networks, 11, 189–208.

    Article  PubMed  Google Scholar 

  • Paradiso, M.A. and Nakayama, K. (1991). Brightness perception and filling-in. Vision Research, 31, 1221–1236.

    Article  PubMed  Google Scholar 

  • Petry, S. and Meyer, G. (Eds.) (1987). The Perception of Illusory Contours. Springer-Verlag.

    Google Scholar 

  • Petter, G. (1956). Nuove ricerche sperimentali sulla totalizzazione oercettiva. Rivista du Psicologia, 50, 213–227.

    Google Scholar 

  • Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T., and Norcia, A.M. (1998). Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature, 391, 580–584.

    PubMed  Google Scholar 

  • Raizada, R.D.S. and Grossberg, 5. (2001). Context-sensitive binding by the laminar circuits of Vi and V2: A unified model of perceptual grouping, attention, and orientation contrast. Visual Cognition, 8, 431–466.

    Google Scholar 

  • Reynolds, J., Chelazzi, L., and Desimone, R., (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736–1753.

    PubMed  Google Scholar 

  • Roelfsema, P.R., Lamme, V.A.F., and Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395, 376–381.

    Article  PubMed  Google Scholar 

  • Rogers-Ramachandran, D.C. and Ramachandran, V.S. (1998). Psychophysical evidence for boundary and surface systems in human vision. Vision Research. 38, 71–77.

    Article  PubMed  Google Scholar 

  • Shipley, T.F. and Kellman, P.J. (1992). Strength of visual interpolation depends on the ratio of physically specified to total edge length. Perception and Psychophysics, 52, 97–106.

    PubMed  Google Scholar 

  • Shipley, T.F. and Kellman, P.J. (1992). Perception of partly occluded objects and illusory figures: Evidence for an identify hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 18, 106–120.

    Article  Google Scholar 

  • Sillito, A.M., Jones, H.E., Gerstein, G.L., and West, D.C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature, 369, 479–482.

    Article  PubMed  Google Scholar 

  • Swaminathan, G. and Grossberg, 5. (2001). Laminar cortical circuits for the perception of slanted and curved 3-D surfaces. Society for Neuroscience Abstracts, 27, 619.49.

    Google Scholar 

  • Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.

    Article  PubMed  Google Scholar 

  • Tommasi, L., Bressan, P., & Vallortigara, G. (1995) Solving occlusion indeterminacy in chromatically homogeneous patterns. Perception, 24, 391–403.

    PubMed  Google Scholar 

  • Von Der Heydt, R., Peterhans, E., and Baumgartner, G. (1984). illusory contours and cortical neuron responses. Science, 224, 1260–1262.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grossberg, S. (2004). Neural Models of Seeing and Thinking. In: Carsetti, A. (eds) Seeing, Thinking and Knowing. Theory and Decision Library A:, vol 38. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2081-3_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2081-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2080-3

  • Online ISBN: 978-1-4020-2081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics