Skip to main content

The Gelatinases, MMP-2 and MMP-9-Implications for Invasion and Metastasis

  • Chapter
Proteases and Their Inhibitors in Cancer Metastasis

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 4))

  • 117 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander CM, Hansell EJ, Behrendtsen O, Flannery ML, Kishnani NS, Hawkes SP, Werb Z. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 1996; 122: 1723–1736.

    CAS  PubMed  Google Scholar 

  • Ara T, Kusafuka T, Inoue M, Kuroda S, Fukuzawa M, Okada A. Determination of imbalance between MMP-2 and TIMP-2 in human neuroblastoma by reverse-transcription polymerase chain reaction and its correlation with tumor progression. J Pediatr Surg 2000; 35: 432–437.

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero FJ, Herrera-Goepfert R, Delgado-Chavez R, Zinser-Sierra JW, De la Garza-Salazar JG, Herrera-Gomez A, Perez-Cardenas E. Matrix metalloproteinases expressed in squamous cell carcinoma of the oral cavity: correlation with clinicopathologic features and neo-adjuvant chemotherapy response. J Exp Clin Cancer Res 1999; 18: 279–284.

    CAS  PubMed  Google Scholar 

  • Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, Mizumoto M, Fukumoto M, Imamura M. Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology 1996; 24: 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Bein K, Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 2000; 275: 32167–3213.

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–744.

    Article  CAS  PubMed  Google Scholar 

  • Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci (USA) 1994; 91: 4293–4297.

    Article  CAS  ADS  Google Scholar 

  • Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K. Structural properties of matrix metalloproteinase. Cell Mol Life Sci 1999; 55: 639–652.

    Article  CAS  PubMed  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000; 1477: 267–283.

    Article  CAS  PubMed  Google Scholar 

  • Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998; 92: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alphav beta3. Cell 1996; 85: 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Butler GS, Apte SS, Willenbrock F, Murphy G. Human tissue inhibitor of metallo-proteinases 3 interacts with both the N-and C-terminal domains of gelatinases A and B. Regulation by polyanions. J Biol Chem 1999; 274: 10846–10851.

    Article  CAS  PubMed  Google Scholar 

  • Canete-Soler R, Gui YH, Linask KK, Muschel RJ. Developmental expression of MMP-9 (gelatinase B) mRNA in mouse embryos. Dev Dyn 1995; 204: 30–40.

    CAS  PubMed  Google Scholar 

  • Canete-Soler R, Litzky L, Lubensky I, Muschel RJ. Localization of the 92 kd gelatinase mRNA in squamous cell and adenocarcinomas of the lung using in situ hybridization. Am J Pathol 1994; 144: 518–527.

    CAS  PubMed  Google Scholar 

  • Charvat S, Chignol MC, Souchier C, Le Griel C, Schmitt D, Serres M. Cell migration and MMP-9 secretion are increased by epidermal growth factor in HaCaT-ras transfected cells. Exp Dermatol 1998; 7: 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Narayanan R, Hibbs MS, Benn PA, Clawson ML, Lu G, Rhim JS, Greenberg B, Mendelsohn J. Altered epidermal growth factor signal transduction in activated Ha-ras-transformed human keratinocytes. Biochem Biophys Res Commun 1993; 193: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Cockett MI, Murphy G, Birch ML, O’Connell JP, Crabbe T, Millican AT, Hart IR, Docherty AJ. Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 1998; 63: 295–313.

    CAS  PubMed  Google Scholar 

  • Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He CS, Bauer EA, Goldberg GI. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 1988; 263: 6579–6587.

    CAS  PubMed  Google Scholar 

  • Cox G, Jones JL, O’Byrne KJ. Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer. Clin Cancer Res 2000; 6: 2349–2355.

    CAS  PubMed  Google Scholar 

  • Curran S, Murray GI. Matrix metalloproteinases. molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 2000; 36: 1621–1630.

    Article  CAS  PubMed  Google Scholar 

  • Davidson B, Goldberg I, Kopolovic J, Lerner-Geva L, Gotlieb WH, Ben-Baruch G, Reich R. MMP-2 and TIMP-2 expression correlates with poor prognosis in cervical carcinoma-a clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol Oncol 1999; 73: 372–382.

    Article  CAS  PubMed  Google Scholar 

  • Dubois B, Masure S, Hurtenbach U, Paemen L, Heremans H, van den Oord J, Sciot R, Meinhardt T, Hammerling G, Opdenakker G, Arnold B. Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J Clin Invest 1999; 104: 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  • Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Etoh T, Inoue H, Yoshikawa Y, Barnard GF, Kitano S, Mori M. Increased expression of collagenase-3 (MMP-13) and MT1-MMP in oesophageal cancer is related to cancer aggressiveness. Gut 2000; 47: 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci (USA) 2000; 97: 3884–3889.

    Article  CAS  ADS  Google Scholar 

  • Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci 1999; 878: 372–387.

    Article  CAS  PubMed  Google Scholar 

  • Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis [published erratum appears in J Cell Biol 2000; 149: following 236]. J Cell Biol 2000; 148: 779–790.

    Article  CAS  PubMed  Google Scholar 

  • Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999; 99: 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 2000; 149: 1309–1323.

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Muschel RJ. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res 1996; 56: 5279–5284.

    CAS  PubMed  Google Scholar 

  • Huhtala P, Chow LT, Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem 1990; 265: 11077–11082.

    CAS  PubMed  Google Scholar 

  • Huhtala P, Tuuttila A, Chow LT, Lohi J, Keski-Oja J, Tryggvason K. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92-and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem 1991; 266: 16485–16490.

    CAS  PubMed  Google Scholar 

  • Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 1999; 17: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 1998; 58: 1048–1051.

    CAS  PubMed  Google Scholar 

  • Kawamata H, Kameyama S, Kawai K, Tanaka Y, Nan L, Barch DH, Stetler-Stevenson WG, Oyasu R. Marked acceleration of the metastatic phenotype of a rat bladder carcinoma cell line by the expression of human gelatinase A. Int J Cancer 1995; 63: 568–575.

    Article  CAS  PubMed  Google Scholar 

  • Kondapaka SB, Fridman R, Reddy KB. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer 1997; 70: 722–726.

    Article  CAS  PubMed  Google Scholar 

  • Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci (USA) 1996; 93: 7069–7074.

    Article  CAS  ADS  Google Scholar 

  • Lijnen HR, Lupu F, Moons L, Carmeliet P, Goulding D, Collen D. Temporal and topographic matrix metalloproteinase expression after vascular injury in mice. Thromb Haemost 1999; 81: 799–807.

    CAS  PubMed  Google Scholar 

  • Liu E, Thant AA, Kikkawa F, Kurata H, Tanaka S, Nawa A, Mizutani S, Matsuda S, Hanafusa H, Hamaguchi M. The Ras-mitogen-activated protein kinase pathway is critical for the activation of matrix metalloproteinase secretion and the invasiveness in v-crk-transformed 3Y1. Cancer Res 2000a; 60: 2361–2364.

    CAS  PubMed  Google Scholar 

  • Liu Z, Shipley JM, Vu TH, Zhou X, Diaz LA, Werb Z, Senior RM. Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J Exp Med 1998; 188: 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhou X, Shapiro SD, Shipley JM, Twining SS, Diaz LA, Senior RM, Werb Z. The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 2000b; 102: 647–655.

    Article  CAS  PubMed  Google Scholar 

  • Llorens A, Rodrigo I, Lopez-Barcons L, Gonzalez-Garrigues M, Lozano E, Vinyals A, Quintanilla M, Cano A, Fabra A. Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest 1998; 78: 1131–1142.

    CAS  PubMed  Google Scholar 

  • MacDougall JR, Bani MR, Lin Y, Muschel RJ, Kerbel RS. ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression. Br J Cancer 1999; 80: 504–512.

    Article  CAS  PubMed  Google Scholar 

  • Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. Faseb J 1998; 12: 1075–1095.

    CAS  PubMed  Google Scholar 

  • McCawley LJ, O’Brien P, Hudson LG. Epidermal growth factor (EGF)-and scatter factor/hepatocyte growth factor (SF/HGF)-mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J Cell Physiol 1998; 176: 255–265.

    Article  CAS  PubMed  Google Scholar 

  • McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000; 289: 1202–1206.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J. Mechanisms for pro matrix metalloproteinase activation. Apmis 1999; 107: 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Nagase H. Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res 1998; 8: 179–186.

    CAS  PubMed  Google Scholar 

  • Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–21494.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara H, Howard L, Thompson EW, Sato H, Seiki M, Yeh Y, Chen WT. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci (USA) 1997; 94: 7959–7964.

    Article  CAS  ADS  Google Scholar 

  • Nguyen M, Arkell J, Jackson CJ. Activated protein C directly activates human endothelial gelatinase A. J Biol Chem 2000; 275: 9095–9098.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 1999; 274: 29568–29571.

    Google Scholar 

  • Ogata Y, Itoh Y, Nagase H. Steps involved in activation of the pro-matrix metalloproteinase 9 (progelatinase B)-tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J Biol Chem 1995; 270: 18506–18511.

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 1995; 72: 311–322.

    CAS  PubMed  Google Scholar 

  • Olson MW, Gervasi DC, Mobashery S, Fridman R. Kinetic analysis of the binding of human matrix metalloproteinase-2 and-9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 1997; 272: 29975–29983.

    Article  CAS  PubMed  Google Scholar 

  • Olson MW, Toth M, Gervasi DC, Sado Y, Ninomiya Y, Fridman R. High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J Biol Chem 1998; 273: 10672–10681.

    Article  CAS  PubMed  Google Scholar 

  • Overall CM, King AE, Sam DK, Ong AD, Lau TT, Wallon UM, DeClerck YA, Atherstone J. Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J Biol Chem 1999; 274: 4421–4429.

    Article  CAS  PubMed  Google Scholar 

  • Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms [see comments]. J Clin Invest 2000; 105: 1641–1649.

    Article  CAS  PubMed  Google Scholar 

  • Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 1999; 274: 13066–13076.

    Article  CAS  PubMed  Google Scholar 

  • Rao JS, Yamamoto M, Mohaman S, Gokaslan ZL, Fuller GN, Stetler-Stevenson WG, Rao VH, Liotta LA, Nicolson GL, Sawaya RE. Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 1996; 14: 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K. High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol 1994; 124: 1091–1102.

    Article  CAS  PubMed  Google Scholar 

  • Sehgal G, Hua J, Bernhard EJ, Sehgal I, Thompson TC, Muschel RJ. Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am J Pathol 1998; 152: 591–596.

    CAS  PubMed  Google Scholar 

  • Simon N, Noel A, Foidart JM. Evaluation of in vitro reconstituted basement membrane assay to assess the invasiveness of tumor cells. Invasion Metastasis 1992; 12: 156–167.

    CAS  PubMed  Google Scholar 

  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A, Ikawa Y, Ratzkin BJ, Arakawa T, Noda M. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci (USA) 1998; 95: 13221–13226.

    Article  CAS  ADS  Google Scholar 

  • Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T. MMP-2 positivity and age less than 40 years increases the risk for recurrence in premenopausal patients with node-positive breast carcinoma. Breast Cancer Res Treat 1999; 58: 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Hojo K, Yoshida H, Yoshioka T, Sugita K. Molecular cloning and expression of the mouse 105-kDa gelatinase cDNA. Biochem Biophys Res Commun 1993; 190: 732–740.

    Article  CAS  PubMed  Google Scholar 

  • Toth M, Sado Y, Ninomiya Y, Fridman R. Biosynthesis of alpha2(IV) and alpha1(IV) chains of collagen IV and interactions with matrix metalloproteinase-9. J Cell Physiol 1999; 180: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Van Den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 2000; 96: 2673–2681.

    PubMed  Google Scholar 

  • von Bredow DC, Cress AE, Howard EW, Bowden GT, Nagle RB. Activation of gelatinase-tissue-inhibitors-of-metalloproteinase complexes by matrilysin. Biochem J 1998; 331: 965–972.

    Google Scholar 

  • Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93: 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages [published erratum appears in J Biol Chem 1990; 265: 22570]. J Biol Chem 1989; 264: 17213–17221.

    CAS  PubMed  Google Scholar 

  • Wylie S, MacDonald IC, Varghese HJ, Schmidt EE, Morris VL, Groom AC, Chambers AF. The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin Exp Metastasis 1999; 17: 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 1999; 13: 35–48.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14: 163–176.

    PubMed  Google Scholar 

  • Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci (USA) 2000; 97: 4052–4057.

    Article  CAS  ADS  Google Scholar 

  • Zhu WH, Guo X, Villaschi S, Francesco Nicosia R. Regulation of vascular growth and regression by matrix metalloproteinases in the rat aorta model of angiogenesis. Lab Invest 2000; 80: 545–555.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Muschel, R.J., Yong, J. (2002). The Gelatinases, MMP-2 and MMP-9-Implications for Invasion and Metastasis. In: Foidart, JM., Muschel, R.J. (eds) Proteases and Their Inhibitors in Cancer Metastasis. Cancer Metastasis — Biology and Treatment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2008-2_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2008-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0923-5

  • Online ISBN: 978-1-4020-2008-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics