Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1341 Accesses

Abstract

A semidiscrete multiplier is an operator between a space of functions or distributions on a locally compact Abelian group G on the one hand, and a space of sequences on a discrete subgroup H of G on the other hand, with the property that it commutes with shifts by H. We describe the basic form of such operators and show a number of representation theorems for classical spaces like L p, C 0, etc.

We also point out parallels to representation theorems for multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Benedek and R. Panzone, The spaces L P, with mixed norm, Duke Math. J., 28 (1961), pp. 301–324.

    Article  MATH  Google Scholar 

  2. J. J. Benedetto, Irregular sampling and frames, in: Wavelets: A Tutorial in Theory and Applications, C. Chui, ed., Academic Press, Boston, 1992, pp. 445–507.

    Google Scholar 

  3. J. J. Benedetto and G. Zimmermann, Sampling multipliers and the Poisson Summation Formula, J. Fourier Anal. Appl., 3 (1997), pp. 505–523.

    Article  MATH  Google Scholar 

  4. C. de Boor and G. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory, 8 (1973), pp. 19–45.

    Article  MATH  Google Scholar 

  5. R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb., 90, Springer, Berlin, 1977.

    Google Scholar 

  6. W. Gautschi, Attenuation factors in practical Fourier analysis, Numer. Math., 18 (1972), pp. 373–400.

    Article  MATH  Google Scholar 

  7. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Grundlehren Math. Wiss., 115, Springer, Berlin, 1963.

    MATH  Google Scholar 

  8. R.-Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II: Powers of two, in: Curves and Surfaces, P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, eds., Academic Press, Boston, 1991, pp. 209–246.

    Google Scholar 

  9. R. Larsen, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss., 175, Springer, Berlin, 1971.

    MATH  Google Scholar 

  10. J. Lei, R.-Q. Jia, and E. W. Cheney, Approximation from shift-invariant spaces by integral operators. SIAM J. Math. Anal., 28 (1997), pp. 481–498.

    Article  MATH  Google Scholar 

  11. S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2(ℝ), Trans. Amer. Math. Soc., 315 (1989), pp. 69–87.

    Article  MATH  Google Scholar 

  12. H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Quasi-interpolation in shift invariant spaces, J. Math. Anal. Appl., 251 (2000), pp. 356–363.

    Article  MATH  Google Scholar 

  13. W. Sweldens, Construction and Applications of Wavelets in Numerical Analysis, Ph.D. Thesis, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to my academic teacher Prof. John J. Benedetto with many thanks for all the beauty in mathematics he taught me to see.

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Zimmermann, G. (2006). Semidiscrete Multipliers. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_3

Download citation

Publish with us

Policies and ethics