Skip to main content

Redundancy in the Frequency Domain

  • Chapter
Harmonic Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

A description of the fine structure of a refinable, shift-invariant sub-space of L 2(ℝ) is presented. This fine structure is exhibited through the existence of a canonical frame of functions in such a space, and a related notion of frequency content in these frame elements uniquely determines a multiplicity function that quantifies a redundancy of the frequencies. The refinability of the subspace can then be described by a pair of matrices of periodic functions that satisfy a set of equations, related to the multiplicity function, which play the role of high-dimensional filter equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Baggett, J. Courter, and K. Merrill, The construction of wavelets from generalized conjugate mirror filters in L 2(ℝn); Appl. Comput. Harmon. Anal., 13 (2002), pp. 201–233.

    Article  MATH  Google Scholar 

  2. L. Baggett, P. Jorgensen, K. Merrill, and J. Packer, Construction of Parseval wavelets from redundant filter systems, J. Math. Phys., 46 (2005), 28 pp.

    Google Scholar 

  3. L. Baggett, H. Medina, and K. Merrill, Generalized multiresolution analyses and a construction procedure for all wavelet sets in ℝn; J. Fourier Anal. Appl., 5 (1999), pp. 563–573.

    Article  MATH  Google Scholar 

  4. J.J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5 (1998), pp. 389–427.

    Article  MATH  Google Scholar 

  5. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  6. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341–366.

    Article  MATH  Google Scholar 

  7. P. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Publishing Co., New York, 1951.

    MATH  Google Scholar 

  8. H. Helson, The Spectral Theorem, Lecture Notes in Mathematics, Vol. 1227, Springer-Verlag, New York, 1986.

    MATH  Google Scholar 

  9. S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2(ℝ), Trans. Amer. Math. Soc., 315 (1989), pp. 69–87.

    Article  MATH  Google Scholar 

  10. Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Baggett, L. (2006). Redundancy in the Frequency Domain. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_15

Download citation

Publish with us

Policies and ethics