Dimension Reduction in Multivariate Time Series

  • Daniel Peña
  • Pilar Poncela
Part of the Statistics for Industry and Technology book series (SIT)


This chapter compares models for dimension reduction in time series and tests of the dimension of the dynamic structure. We consider both stationary and nonstationary time series and discuss principal components, canonical analysis, scalar component models, reduced rank models, and factor models. The unifying view of canonical correlation analysis between the present and past values of the series is emphasized. Then, we review some of the tests based on canonical correlation analysis to find the dimension of the dynamic relationship among the time series. Finally, the procedures are compared through a real data example.

Keywords and phrases

Canonical correlation analysis dimension reduction vector time series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, S. K., and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time series, Journal of the American Statistical Association, 83, 849–856.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ahn, S. K., and Reinsel, G. C. (1990). Estimation for partially nonstationary multivariate autoregressive models, Journal of the American Statistical Association, 85, 813–823.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ahn, S. K. (1997). Inference of vector autoregressive models with cointegration and scalar components, Journal of the American Statistical Association, 92, 350–356.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Akaike, H. (1974). Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes, Annals of the Institute of Statistical Mathematics, 26, 363–387.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Anderson, T. W. (1963). The use of factor analysis in the statistical analysis of multiple time series, Psychometrika, 28, 1–25.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Aoki, M. (1987). State Space Modeling of Time Series, Springer-Verlag, Heidelberg.zbMATHGoogle Scholar
  7. 7.
    Banarjee, A., Dolado, J., Galbraith, J. W., and Hendry, D. (1993). Cointegration, Error Correction, and the Econometric Analysis of Nonstationary Data, Oxford University Press, Oxford.Google Scholar
  8. 8.
    Box, G., and Tiao, G. (1977). A canonical analysis of multiple time series, Biometrika, 64, 355–365.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brillinger D. R. (1981). Time Series Data Analysis and Theory, Expanded edition, Holden-Day, San Francisco.zbMATHGoogle Scholar
  10. 10.
    Casals J., Jerez, M., and Sotoca, S. (2002). An exact multivariate modelbased structural decomposition, Journal of the American Statistical Association, 97, 533–564.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Durbin, J., and Koopman, S. K. (2001). Time Series Analysis by State Space Models, Oxford University Press, Oxford.Google Scholar
  12. 12.
    Engle, R. F., and Granger, C. W. J. (1987). Cointegration and error correction: Representation, estimation and testing, Econometrica, 55, 251–276.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Escribano, A. and Peñ, D. (1994). Cointegration and common factors, Journal of Time Series Analysis, 15, 577–586.zbMATHMathSciNetGoogle Scholar
  14. 14.
    Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic factor model: Identification and estimation, The Review of Economic and Statistics, 82, 540–554.CrossRefGoogle Scholar
  15. 15.
    Geweke, J. F., and Singleton K. J. (1981). Maximum likelihood confirmatory analysis of economic time series, International Economic Review, 22, 37–54.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hannan, E. J., and Deistler, M. (1988). The Statistical Analysis of Linear Systems, John Wiley_& Sons, New York.Google Scholar
  17. 17.
    Harvey, A. (1989). Forecasting Structural Time Series Models and the Kalman Filter, Second edition, Cambridge University Press, Cambridge.Google Scholar
  18. 18.
    Harvey, A. (2001). Testing in unobserved components models, Journal of Forecasting, 20, 1–19.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Harris, D. (1997). Principal components analysis of cointegrated time series, Econometric Theory, 13, 529–557.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, Y., and Chou, R. (2004). On the Peña-Box model, Journal of Time Series Analysis, 25, 811–830.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control, 12, 231–254.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica, 59, 1551–1580.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford.zbMATHGoogle Scholar
  24. 24.
    Molenaar, P. C. M., De Gooijer, J. G., and Schmitz, B. (1992). Dynamic factor analysis of nonstationary multivariate time series, Psychometrika, 57, 333–349.zbMATHCrossRefGoogle Scholar
  25. 25.
    Peña, D. (1995). Forecasting growth with time series models. Journal of Forecasting, 14, 97–105.CrossRefGoogle Scholar
  26. 26.
    Peña, D., and Box, G. (1987). Identifying a simplifying structure in time series, Journal of the American Statistical Association, 82, 836–843.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Peña, D., and Poncela, P. (2004). Forecasting with nonstationary dynamic factor models, Journal of Econometrics, 119, 291–321.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Peña, D., and Poncela, P. (2006). Nonstationary dynamic factor analysis, Journal of Statistical Planning and Inference, (to appear).Google Scholar
  29. 29.
    Peña, D., Tiao. G. C., and Tsay, R. S. (2001). A Course in Time Series Analysis, John Wiley_& Sons, New York.zbMATHGoogle Scholar
  30. 30.
    Priestley, M. B., Rao, T. S., and Tong, J. (1974). Applications of principal component analysis and factor analysis in the identification of multivariable systems, IEEE Transactions on Automation and Control, 19, 703–704.Google Scholar
  31. 31.
    Quenouille, M. H. (1968). The Analysis of Multiple Time Series, Charles Griffin, London.Google Scholar
  32. 32.
    Rechner, A. C. (1995). Methods of Multivariate Analysis, John Wiley_& Sons, New York.Google Scholar
  33. 33.
    Reinsel G. C., and Ahn, S. K. (1992). Vector autoregressive models with unit roots and reduced rank structure: estimation, likelihood ratio tests and forecasting, Journal of Time Series Analysis, 13, 353–375.zbMATHMathSciNetGoogle Scholar
  34. 34.
    Reinsel, G. C., and Velu. R. P. (1998). Multivariate Reduced-Rank Regression, Springer-Verlag, New York.zbMATHGoogle Scholar
  35. 35.
    Robinson, P. M. (1973). Generalized canonical analysis for time series, Journal of Multivariate Analysis, 3, 141–160.CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Shumway, R. H., and Stoffer D. S. (2000). Time Series Analysis and Its Applications, Springer-Verlag, New York.zbMATHGoogle Scholar
  37. 37.
    Stock, J. H., and Watson, M. W. (1988). Testing for common trends, Journal of the American Statistical Assocation, 83, 1097–1107.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Tiao, G. C. and Tsay, R. S. (1989). Model specification in multivariate time series, Journal of the Royal Statistical Society, Series B, 51, 157–213.zbMATHMathSciNetGoogle Scholar
  39. 39.
    Tsay, R. S., and Tiao, G. C. (1990). Asymptotic properties of multivariate nonstationary processes with applications to autoregressions, The Annals of Statistics, 18, 220–250.zbMATHMathSciNetGoogle Scholar
  40. 40.
    Velu, R. P., Reinsel, G. C., and Wichern, D. W. (1986). Reduced rank models for multiple time series, Biometrika, 73, 105–118.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • Daniel Peña
    • 1
    • 2
  • Pilar Poncela
    • 1
    • 2
  1. 1.Universidad Carlos III de MadridMadridSpain
  2. 2.Universidad Autónoma de MadridMadridSpain

Personalised recommendations