Skip to main content

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

This chapter compares models for dimension reduction in time series and tests of the dimension of the dynamic structure. We consider both stationary and nonstationary time series and discuss principal components, canonical analysis, scalar component models, reduced rank models, and factor models. The unifying view of canonical correlation analysis between the present and past values of the series is emphasized. Then, we review some of the tests based on canonical correlation analysis to find the dimension of the dynamic relationship among the time series. Finally, the procedures are compared through a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S. K., and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time series, Journal of the American Statistical Association, 83, 849–856.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahn, S. K., and Reinsel, G. C. (1990). Estimation for partially nonstationary multivariate autoregressive models, Journal of the American Statistical Association, 85, 813–823.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahn, S. K. (1997). Inference of vector autoregressive models with cointegration and scalar components, Journal of the American Statistical Association, 92, 350–356.

    Article  MATH  MathSciNet  Google Scholar 

  4. Akaike, H. (1974). Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes, Annals of the Institute of Statistical Mathematics, 26, 363–387.

    Article  MATH  MathSciNet  Google Scholar 

  5. Anderson, T. W. (1963). The use of factor analysis in the statistical analysis of multiple time series, Psychometrika, 28, 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  6. Aoki, M. (1987). State Space Modeling of Time Series, Springer-Verlag, Heidelberg.

    MATH  Google Scholar 

  7. Banarjee, A., Dolado, J., Galbraith, J. W., and Hendry, D. (1993). Cointegration, Error Correction, and the Econometric Analysis of Nonstationary Data, Oxford University Press, Oxford.

    Google Scholar 

  8. Box, G., and Tiao, G. (1977). A canonical analysis of multiple time series, Biometrika, 64, 355–365.

    Article  MATH  MathSciNet  Google Scholar 

  9. Brillinger D. R. (1981). Time Series Data Analysis and Theory, Expanded edition, Holden-Day, San Francisco.

    MATH  Google Scholar 

  10. Casals J., Jerez, M., and Sotoca, S. (2002). An exact multivariate modelbased structural decomposition, Journal of the American Statistical Association, 97, 533–564.

    Article  MathSciNet  Google Scholar 

  11. Durbin, J., and Koopman, S. K. (2001). Time Series Analysis by State Space Models, Oxford University Press, Oxford.

    Google Scholar 

  12. Engle, R. F., and Granger, C. W. J. (1987). Cointegration and error correction: Representation, estimation and testing, Econometrica, 55, 251–276.

    Article  MATH  MathSciNet  Google Scholar 

  13. Escribano, A. and Peñ, D. (1994). Cointegration and common factors, Journal of Time Series Analysis, 15, 577–586.

    MATH  MathSciNet  Google Scholar 

  14. Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic factor model: Identification and estimation, The Review of Economic and Statistics, 82, 540–554.

    Article  Google Scholar 

  15. Geweke, J. F., and Singleton K. J. (1981). Maximum likelihood confirmatory analysis of economic time series, International Economic Review, 22, 37–54.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hannan, E. J., and Deistler, M. (1988). The Statistical Analysis of Linear Systems, John Wiley_& Sons, New York.

    Google Scholar 

  17. Harvey, A. (1989). Forecasting Structural Time Series Models and the Kalman Filter, Second edition, Cambridge University Press, Cambridge.

    Google Scholar 

  18. Harvey, A. (2001). Testing in unobserved components models, Journal of Forecasting, 20, 1–19.

    Article  MathSciNet  Google Scholar 

  19. Harris, D. (1997). Principal components analysis of cointegrated time series, Econometric Theory, 13, 529–557.

    Article  MathSciNet  Google Scholar 

  20. Hu, Y., and Chou, R. (2004). On the Peña-Box model, Journal of Time Series Analysis, 25, 811–830.

    Article  MATH  MathSciNet  Google Scholar 

  21. Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control, 12, 231–254.

    Article  MathSciNet  MATH  Google Scholar 

  22. Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica, 59, 1551–1580.

    Article  MATH  MathSciNet  Google Scholar 

  23. Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford.

    MATH  Google Scholar 

  24. Molenaar, P. C. M., De Gooijer, J. G., and Schmitz, B. (1992). Dynamic factor analysis of nonstationary multivariate time series, Psychometrika, 57, 333–349.

    Article  MATH  Google Scholar 

  25. Peña, D. (1995). Forecasting growth with time series models. Journal of Forecasting, 14, 97–105.

    Article  Google Scholar 

  26. Peña, D., and Box, G. (1987). Identifying a simplifying structure in time series, Journal of the American Statistical Association, 82, 836–843.

    Article  MATH  MathSciNet  Google Scholar 

  27. Peña, D., and Poncela, P. (2004). Forecasting with nonstationary dynamic factor models, Journal of Econometrics, 119, 291–321.

    Article  MathSciNet  Google Scholar 

  28. Peña, D., and Poncela, P. (2006). Nonstationary dynamic factor analysis, Journal of Statistical Planning and Inference, (to appear).

    Google Scholar 

  29. Peña, D., Tiao. G. C., and Tsay, R. S. (2001). A Course in Time Series Analysis, John Wiley_& Sons, New York.

    MATH  Google Scholar 

  30. Priestley, M. B., Rao, T. S., and Tong, J. (1974). Applications of principal component analysis and factor analysis in the identification of multivariable systems, IEEE Transactions on Automation and Control, 19, 703–704.

    Google Scholar 

  31. Quenouille, M. H. (1968). The Analysis of Multiple Time Series, Charles Griffin, London.

    Google Scholar 

  32. Rechner, A. C. (1995). Methods of Multivariate Analysis, John Wiley_& Sons, New York.

    Google Scholar 

  33. Reinsel G. C., and Ahn, S. K. (1992). Vector autoregressive models with unit roots and reduced rank structure: estimation, likelihood ratio tests and forecasting, Journal of Time Series Analysis, 13, 353–375.

    MATH  MathSciNet  Google Scholar 

  34. Reinsel, G. C., and Velu. R. P. (1998). Multivariate Reduced-Rank Regression, Springer-Verlag, New York.

    MATH  Google Scholar 

  35. Robinson, P. M. (1973). Generalized canonical analysis for time series, Journal of Multivariate Analysis, 3, 141–160.

    Article  MathSciNet  MATH  Google Scholar 

  36. Shumway, R. H., and Stoffer D. S. (2000). Time Series Analysis and Its Applications, Springer-Verlag, New York.

    MATH  Google Scholar 

  37. Stock, J. H., and Watson, M. W. (1988). Testing for common trends, Journal of the American Statistical Assocation, 83, 1097–1107.

    Article  MATH  MathSciNet  Google Scholar 

  38. Tiao, G. C. and Tsay, R. S. (1989). Model specification in multivariate time series, Journal of the Royal Statistical Society, Series B, 51, 157–213.

    MATH  MathSciNet  Google Scholar 

  39. Tsay, R. S., and Tiao, G. C. (1990). Asymptotic properties of multivariate nonstationary processes with applications to autoregressions, The Annals of Statistics, 18, 220–250.

    MATH  MathSciNet  Google Scholar 

  40. Velu, R. P., Reinsel, G. C., and Wichern, D. W. (1986). Reduced rank models for multiple time series, Biometrika, 73, 105–118.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Peña, D., Poncela, P. (2006). Dimension Reduction in Multivariate Time Series. In: Balakrishnan, N., Sarabia, J.M., Castillo, E. (eds) Advances in Distribution Theory, Order Statistics, and Inference. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4487-3_28

Download citation

Publish with us

Policies and ethics