Phi-Divergence-Type Test for Positive Dependence Alternatives in 2×k Contingency Tables

  • L. Pardo
  • M.L. Menéndez
Part of the Statistics for Industry and Technology book series (SIT)


In this chapter, we consider 2×k contingency tables and derive a new family of test statistics for detecting positive dependence in them. The family of test statistics introduced here is based on the φ-divergence measures of which the likelihood ratio test is a special case.

Keywords and phrases

Asymptotic distributions likelihood ratio test φ-divergence test statistics k contingency tables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armitage, P. (1955). Tests for linear trends in proportions and frequencies, Biometrics 11, 375–386.CrossRefGoogle Scholar
  2. 2.
    Ayer, M., Brunk, H. O., Ewing, G. M., Reid, W. I., and Silverman, E. (1955). An empirical distribution function for sampling with incomplete information, Annals of Mathematical Statistics, 26, 641–647.MathSciNetGoogle Scholar
  3. 3.
    Barlow, R. E., Bartholomew, D. J., Bremmer, J. M., and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions, John Wiley_& Sons, New York.zbMATHGoogle Scholar
  4. 4.
    Cressie, N., and Read, T. R. C. (1984). Multinomial goodness-of-fit tests, Journal of the Royal Statistical Society, Series B, 46, 440–464.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Grove, D. M. (1980). A test of independence against a class of ordered alternatives in a 2×C contingency table, Journal of the American Statistical Association, 75, 454–459.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lee, M. T. (1989). Some cross-product difference statistics and a test for trends in ordered contingency tables, Statistics_& Probability Letters, 7, 41–46.Google Scholar
  7. 7.
    Menéndez, M. L., Pardo, L., and K. Zografos (2002). Tests of hypotheses for and against order restrictions on multinomial parameters based on φ-divergences, Utilitas Mathematica, 61, 209–223.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Menéndez, M. L., Pardo, J. A., and Pardo, L. (2003a). Tests for bivariate symmetry against ordered alternatives in square contingency tables. Australian and New Zealand Journal of Statistics, 45, 1, 115–124.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Menéndez, M. L., Morales, D., and Pardo, L. (2003b). Tests based on divergences for against ordered alternatives in cubic contingency tables, Applied Mathematics and Computation, 134, 207–216.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Park, C. G. (1998). Testing for unimodal dependence in an ordered contingency table with restricted marginal probabilities, Statistics_& Probability Letters, 37, 121–129.zbMATHCrossRefGoogle Scholar
  11. 11.
    Park, C. G. (2002). Testing for ordered trends of binary responses between contingency tables, Journal of Multivariate Analysis, 81, 229–241.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Patefield, W. M. (1982). Exact tests for trends in ordered contingency tables, Applied Statistics, 31, 32–43.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Robertson, T., and Wright, F. T. (1983). On approximation of the level probabilities and associated distributions in order restricted inference, Biometrika, 70, 597–606.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order-Restricted Statistical Inference, John Wiley_& Sons, New York.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • L. Pardo
    • 1
    • 2
  • M.L. Menéndez
    • 1
    • 2
  1. 1.Complutense University of MadridMadridSpain
  2. 2.Politechnical University of MadridMadridSpain

Personalised recommendations