Topics in the History of Order Statistics

  • H. A. David
Part of the Statistics for Industry and Technology book series (SIT)


The term “order statistics” was introduced only in 1942, by Wilks. However, the subject is much older, astronomers having long been interested in estimates of location beyond the sample mean. By early in the nineteenth century measures considered included the median, symmetrically trimmed means, the midrange, and related functions of order statistics. In 1818, Laplace obtained (essentially) the distribution of the rth-order statistic in random samples and also derived a condition on the parent density under which the median is asymptotically more efficient than the mean. Other topics considered are of more recent origin: extreme-value theory and the estimation of location and scale parameters by order statistics.

Keywords and phrases

Measures of location distribution theory extreme-value theory estimation of parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aitken, A. C. (1935). On least squares and linear combinations of observations, Proceedings of the Roual Society of Edinburgh, 55, 42–47.zbMATHGoogle Scholar
  2. 2.
    Anonymous (1821). Dissertation sur la recherche du milieu le plus probable entre les résultats de plusieurs observations ou expériences, Ann. Math. Pures Appliquées 12, 181–204.Google Scholar
  3. 3.
    Bernoulli, J. (1975). Die Werke von Jakob Bernoulli, Vol. 3, Birkhäuser, Basel.zbMATHGoogle Scholar
  4. 4.
    Boscovich, R. J. (1757). De litteraria expenditione per pontificiam ditionem, et synopsis amplioris operist, Bononiensi Scientiarum et Artum Instituto atque Academia Commentarii, 4, 353–396.Google Scholar
  5. 5.
    Cournot, A. A. (1843). Exposition de la théorie des chances et des probabilités, Hachette, Paris. Reprinted in 1984 with changed pagination and extensive notes by B. Bru. Vrin, Paris.Google Scholar
  6. 6.
    Craig, A. T. (1932). On the distribution of certain statistics, American Journal of Mathematics, 54, 353–366.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Daniell, P. J. (1920). Observations weighted according to order, American Journal of Mathematics, 42, 222–236.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    David, H. A. (1998). Early sample measures of variability, Statistical Science, 13, 368–377.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    David, H. A., and Edwards, A. W. F. (2001). Annotated Readings in the History of Statistics, Springer-Verlag, New York.zbMATHGoogle Scholar
  10. 10.
    David, H. A. and Nagaraja, H. N. (2003). Order Statistics, Third edition, John Wiley_& Sons, Hoboken, NJ.zbMATHGoogle Scholar
  11. 11.
    de Haan, L. (1970). On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tracts, 32, Mathematisch Centrum, Amsterdam.zbMATHGoogle Scholar
  12. 12.
    de Moivre, A. (1733). Approximatio ad summam terminorum binomii (a+b)n in seriem expansi, Printed for private circulation.Google Scholar
  13. 13.
    Dodd, E. L. (1922). Functions of measurements under general laws of error, Skandinavsik Aktuarietidskrift, 5, 133–158.Google Scholar
  14. 14.
    Dodd, E. L. (1923). The greatest and least variate under general laws of error, Transactions of the American Mathematical Society, 25, 525–539.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics, Philosophical Transactions of the Royal Society of London, Series A, 222, 309–368. Reprinted in Fisher (1950).CrossRefGoogle Scholar
  16. 16.
    Fisher, R. A. (1950). Contributions to Mathematical Statistics. John Wiley_& Sons, New York.zbMATHGoogle Scholar
  17. 17.
    Fisher, R. A., and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge Philosophical Society, 24, 180–190. Reprinted in Fisher (1950).zbMATHCrossRefGoogle Scholar
  18. 18.
    Fisher, R. A. and Yates, F. (1938). Statistical Tables for Biological, Agricultural and Medical Research, Oliver and Boyd, London.zbMATHGoogle Scholar
  19. 19.
    Fréchet, M. (1927). Sur la loi de probabilité de ľécart maximum, Ann. Soc. Polonaise de Mathématique, 6, 93–116.Google Scholar
  20. 20.
    Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association, 32, 675–701.CrossRefGoogle Scholar
  21. 21.
    Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics, Second edition, Krieger, Malabar, FL.zbMATHGoogle Scholar
  22. 22.
    Gauss, C.F. (1809). Theoria Motus Corporum Coelestium, Perthes and Besser, Hamburg. English translation by C. H. Davis. Little Brown, Boston, 1857; Dover, New York, 1963.Google Scholar
  23. 23.
    Gnedenko, B. (1943). Sur la distribution limite du terme maximum ďune série aléatoire, Annals of Mathematics 44, 423–453.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Godwin, H. J. (1949). Some low moments of order statistics, Annals of Mathematical Statistics, 20, 279–285.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.zbMATHGoogle Scholar
  26. 26.
    Gupta, A. K. (1952). Estiamtion of the mean and standard deviation of a normal population from censored samples, Biometrika, 39, 260–273.zbMATHMathSciNetGoogle Scholar
  27. 27.
    Hald, A. (1990). A History of Probability and Statistics and Their Applications Before 1750, John Wiley_& Sons, New York.zbMATHGoogle Scholar
  28. 28.
    Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930, John Wiley_& Sons, New York.zbMATHGoogle Scholar
  29. 29.
    Harter, H. L. (1978). A Chronological Annotated Bibliography of Order Statistics, 1. Pre-1950, U. S. Government Printing Office, Washington, DC.Google Scholar
  30. 30.
    Harter, H. L. (1983–1993). A Chronological Annotated Bibliography of Order Statistics, 1–8. American Sciences Press, Columbus, OH.Google Scholar
  31. 31.
    Harter, H. L. (1988). History and role of order statistics, Communications in Statistics—Theory and Methods, 17, 2091–2108.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Hastings, C., Jr., Mosteller, F., Tukey, J. W., and Winsor, C. P. (1947). Low moments for small smaples: A comparative study of order statistics, Annals of Mathematical Statistics, 18, 413–426.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Irwin, J. O. (1925). Theory of Francis Galton’s individual difference problem, Biometrika, 17, 100–128.zbMATHGoogle Scholar
  34. 34.
    Juncosa, M. L. (1949). The asymptotic behavior of the minimum in a sequence of random variables, Duke Mathematical Journal, 16, 609–618.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les évènemens, Mem. Acad. Roy. Sci. 6, 621–656. English translation, with introduction, by S. Stigler in Statistical Science, 1, 359–378 (1986).Google Scholar
  36. 36.
    Laplace, P. S. (1818). Théorie analytique des probabilités, deuxième supplément, Section 2. Reprinted in Oeuvres de Laplace 7. Imprimerie Royale, Paris (1847).Google Scholar
  37. 37.
    Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes, Appendix. Courcier, Paris.Google Scholar
  38. 38.
    Lévy, P. (1925). Calcul des probabilités, Gauthier-Villars, Paris.zbMATHGoogle Scholar
  39. 39.
    Lloyd, E. H. (1952). Least-squares estimation of location and scale parameters using order statistics, Biometrika 39, 88–95.zbMATHMathSciNetGoogle Scholar
  40. 40.
    Pearson, E. S., and Kendall, M. G. (1970). Studies in the History of Statistics and Probability, Hafner, Darien, CT.zbMATHGoogle Scholar
  41. 41.
    Pearson, K. (1902). Note on Francis Galton’s difference problem, Biometrika, 1, 390–399.Google Scholar
  42. 42.
    Plackett, R. L. (1949). A historical note on the method of least squares, Biometrika, 36, 458–460.MathSciNetGoogle Scholar
  43. 43.
    Plackett, R. L. (1958). Studies in the history of probability and statistics. VII. The principle of the arithmetic mean, Biometrika, 45, 130–135. Reprinted in Pearson and Kendall (1970).zbMATHGoogle Scholar
  44. 44.
    Reiss, R.-D. (1989). Approximate Distributions of Order Statistics, Springer-Verlag, New York.zbMATHGoogle Scholar
  45. 45.
    Sarhan, A. E., and Greenberg, B. G. (1956). Estimation of location and scale parameters by order statistics from singly and doubly censored samples. Part I. The normal distribution up to samples of size 10, Annals of Mathematical Statistics, 27, 427–451. Correction: 40, 325.MathSciNetzbMATHGoogle Scholar
  46. 46.
    Stigler, S. M. (1973). Simon Newcomb, Percy Daniell, and the history of robust estimation 1885–1920, Journal of the American Statistical Association, 68, 872–879.zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Stigler, S. M. (1986). Laplacés 1774 memoir on inverse probability, Statistical Science, 1, 359–378.MathSciNetGoogle Scholar
  48. 48.
    Teichroew, D. (1956). Tables of expected values of order statistics and products of order statistics for samples of size twenty and less from the normal distribution, Annals of Mathematical Statistics, 27, 410–426.MathSciNetzbMATHGoogle Scholar
  49. 49.
    Tippett, L. H. C. (1925). On the extreme individuals and the range of samples taken from a normal population, Biometrika, 17, 364–387.zbMATHGoogle Scholar
  50. 50.
    von Bortkiewicz, L. (1922). Variationsbreite und mittlerer Fehler, Sitzungsberichte der Berliner Math. Gesellschaft, 21, 3–11.Google Scholar
  51. 51.
    von Mises, R. (1923). Über die Variationsbreite einer Beobachtungsreihe, Sitzungsberichte der Berliner Math. Gesellschaft, 22, 3–8. Reproduced in von Mises (1964).Google Scholar
  52. 52.
    von Mises, R. (1936). La distribution de la plus grande de n valeurs, Rev. Math. Union Interbalkanique 1, 141–160. Reproduced in von Mises (1964).Google Scholar
  53. 53.
    von Mises, R. (1964). Selected Papers of Richard von Mises, Vol. 2, American Mathematical Society, Providence, RI.Google Scholar
  54. 54.
    Wilks, S. S. (1942). Statistical prediction with special reference to the problem of tolerance limits, Annals of Mathematical Statistics, 13, 400–409.MathSciNetzbMATHGoogle Scholar
  55. 55.
    Wilks, S. S. (1948). Order statistics, Bulletin of the American Mathematical Society, 5, 6–50.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • H. A. David
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations