Skip to main content

Shape Variation of Medial Axis Representations via Principal Geodesic Analysis on Symmetric Spaces

  • Chapter
Statistics and Analysis of Shapes

Abstract

Statistical shape analysis of anatomical structures plays an important role in many medical image analysis applications. For instance, shape statistics are useful in understanding the structural changes in anatomy that are caused by growth and disease. Classical statistical techniques can be applied to study shape representations that are parameterized by a linear space, such as landmark data or boundary meshes, but they cannot handle more complex representations of shape. We have been developing representations of geometry based on the medial axis description or m-rep. While the medial representation provides a rich language for variability in terms of bending, twisting, and widening, the medial parameters are elements of a nonlinear Riemannian symmetric space. Therefore, linear statistical methods are not applicable in the m-rep setting, and statistical methods for analyzing manifold data are needed. This chapter presents a general method called principal geodesic analysis (PGA) for computing the variability of manifold-valued data. PGA is a direct generalization of principal component analysis (PCA) and is based solely on intrinsic properties of the underlying manifold, such as the notion of geodesic curves and distance. We demonstrate the use of PGA to describe the shape variability of medial representations, and results are shown on a hippocampus data set. The applicability of PGA is also shown within a 3D image segmentation framework based on a Bayesian posterior optimization of deformable medial models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological Review, 94(2):115–147, 1987.

    Article  Google Scholar 

  2. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages 363–380. MIT Press, Cambridge, MA, 1967.

    Google Scholar 

  3. H. Blum and R. Nagel. Shape description using weighted symmetric axis features. Pattern Recognition, 10(3):167–180, 1978.

    Article  MATH  Google Scholar 

  4. F. L. Bookstein. Size and shape spaces for landmark data in two dimensions (with discussion). Statistical Science, 1(2):181–242, 1986.

    Article  MATH  Google Scholar 

  5. W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edition. Academic Press, New York, 1986.

    MATH  Google Scholar 

  6. C. A. Burbeck, S. M. Pizer, B. S. Morse, D. Ariely, G. Zauberman, and J. Rolland. Linking object boundaries at scale: a common measurement for size and shape judgements. Vision Research, 36(3):361–372, 1996.

    Article  Google Scholar 

  7. S. R. Buss and J. P. Fillmore. Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics, 20(2):95–126, 2001.

    Article  Google Scholar 

  8. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10:183–188, 1978.

    Article  Google Scholar 

  9. T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In Fifth European Conference on Computer Vision, pages 484–498, Freiburg, Germany, 1998.

    Google Scholar 

  10. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models— their training and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

    Article  Google Scholar 

  11. J. Damon. On the smoothness and geometry of boundaries associated to skeletal structures I: Sufficient conditions for smoothness. Annales de l’Institut Fourier, 53:1941–1985, 2003.

    MathSciNet  Google Scholar 

  12. I. Dryden and K. Mardia. Statistical Shape Analysis. John Wiley & Sons, New York, 1998.

    MATH  Google Scholar 

  13. P. T. Fletcher. Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI. Ph.D. thesis, University of North Carolina at Chapel Hill, 2004.

    Google Scholar 

  14. P. T. Fletcher and S. Joshi. Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In Proceedings ECCV 2004 Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), volume LNCS 3117, pages 87–98, 2004.

    Google Scholar 

  15. P. T. Fletcher, C. Lu, and S. Joshi. Statistics of shape via principal geodesic analysis on Lie groups. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 95–101, 2003.

    Google Scholar 

  16. P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi. Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8):995–1005, 2004.

    Article  Google Scholar 

  17. M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré, (10):215–310, 1948.

    Google Scholar 

  18. P. Giblin and B. Kimia. A formal classification of 3D medial axis points and their local geometry. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 566–573, 2000.

    Google Scholar 

  19. C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, 53(2):285–339, 1991.

    MATH  MathSciNet  Google Scholar 

  20. U. Grenander. General Pattern Theory. Oxford University Press, London, 1993.

    Google Scholar 

  21. U. Grenander, M. I. Miller, and A. Srivastava. Hilbert-Schmidt lower bounds for estimators on matrix Lie groups for ATR. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):790–802, 1998.

    Article  Google Scholar 

  22. S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, 1978.

    MATH  Google Scholar 

  23. I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

    Google Scholar 

  24. S. Joshi, S. Pizer, P. T. Fletcher, P. Yushkevich, A. Thall, and J. S. Marron. Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. Transactions on Medical Imaging, 21(5), 2002.

    Google Scholar 

  25. H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Math, 30(5):509–541, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Kelemen, G. Székely, and G. Gerig. Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Transactions on Medical Imaging, 18(10):828–839, 1999.

    Article  Google Scholar 

  27. D. G. Kendall. Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16:81–121, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. G. Kendall. A survey of the statistical theory of shape. Statistical Science, 4(2):87–120, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  29. K. V. Mardia. Directional Statistics. John Wiley & Sons, New York, 1999.

    Google Scholar 

  30. D. Marr and H. K. Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society, Series B, 200:269–294, 1978.

    Article  Google Scholar 

  31. M. I. Miller and L. Younes. Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41(1–2):61–84, 2001.

    Article  MATH  Google Scholar 

  32. W. Mio and A. Srivastava. Elastic-string models for representation and analysis of planar shapes. In Proceedings IEEE Conference on Computer Vision (CVPR), pages 10–15, 2004.

    Google Scholar 

  33. M. Moakher. Means and averaging in the group of rotations. SIAM Journal on Matrix Analysis and Applications, 24(1):1–16, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  34. L. R. Nackman and S. M. Pizer. Three-dimensional shape description using the symmetric axis transform, I: theory. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2):187–202, 1985.

    Google Scholar 

  35. P. Olver. Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  36. X. Pennec. Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements. In IEEE Workshop on Nonlinear Signal and Image Processing, Antalya, Turkey, 1999.

    Google Scholar 

  37. S. Pizer, D. Fritsch, P. Yushkevich, V. Johnson, and E. Chaney. Segmentation, registration, and measurement of shape variation via image object shape. IEEE Transactions on Medical Image Analysis, 18:851–865, 1999.

    Article  Google Scholar 

  38. S. Pizer and K. Siddiqi. Medial Representations: Mathematics, Algorithms and Applications. To appear.

    Google Scholar 

  39. S. M. Pizer, P. T. Fletcher, S. Joshi, A. Thall, J. Z. Chen, Y. Fridman, D. S. Fritsch, A. G. Gash, J. M. Glotzer, M. R. Jiroutek, C. Lu, K. E. Muller, G. Tracton, P. Yushkevich, and E. L. Chaney. Deformable m-reps for 3D medical image segmentation. International Journal of Computer Vision, 55(2–3):85–106, 2003.

    Article  Google Scholar 

  40. S. M. Pizer, K. Siddiqi, G. Sz’ekely, J. N. Damon, and S. W. Zucker. Multiscale medial loci and their properties. International Journal of Computer Vision, 55(2–3):155–179, 2003.

    Article  Google Scholar 

  41. M. Rao, J. Stough, Y.-Y. Chi, K. Muller, G. S. Tracton, S. M. Pizer, and E. L. Chaney. Comparison of human and automatic segmentations of kidneys from CT images. International Journal of Radiation Oncology, Biology, Physics, 61(3):954–960, 2005.

    Article  Google Scholar 

  42. E. Sharon and D. Mumford. 2D-shape analysis using conformal mapping. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 350–357, 2004.

    Google Scholar 

  43. C. G. Small. The Statistical Theory of Shape. Springer, New York, 1996.

    MATH  Google Scholar 

  44. A. Srivastava and E. Klassen. Monte-Carlo extrinsic estimators of manifoldvalued parameters. IEEE Transactions on Signal Processing, 50(2):299–308, 2001.

    Article  Google Scholar 

  45. M. Styner and G. Gerig. Medial models incorporating object variability for 3D shape analysis. In Information Processing in Medical Imaging, pages 502–516, 2001.

    Google Scholar 

  46. A. Thall. Deformable Solid Modeling via Medial Sampling and Displacement Subdivision. Ph.D. thesis, University of North Carolina at Chapel Hill, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Fletcher, P.T., Pizer, S.M., Joshi, S.C. (2006). Shape Variation of Medial Axis Representations via Principal Geodesic Analysis on Symmetric Spaces. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_2

Download citation

Publish with us

Policies and ethics