Skip to main content

Modules with a Demazure flag

  • Chapter
Studies in Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 243))

Summary

A Demazure module can be described as the space of global sections of a suitable line bundle on a Schubert variety. A problem posed by the author in 1985 was to show that the tensor product of a one-dimensional Demazure module with an arbitrary one admits a Demazure flag, that is, a filtration whose quotients are Demazure modules. This was shown by P. Polo (who called such filtrations “excellent”) in a large number of cases including positive characteristic and by O. Mathieu for all semisimple algebraic groups first in zero characteristic and later in arbitrary characteristic.

This paper settles this question in the context of a Kac-Moody algebra with symmetric simply-laced Cartan datum and in arbitrary characteristic. The method combines the corresponding “combinatorial excellent filtration” established independently by P. Littelmann et al. and the author with the globalization techniques of G. Lusztig and M. Kashiwara. In principle the method applies to an arbitrary symmetrizable Kac-Moody algebra; but for technical reasons it is necessary to use a positivity result of Lusztig which applies to only the simply-laced case.

To Denise

Work supported by European Community RTN network “Liegrits”, Grant No. MRTN-CT-2003-505078.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Baumann, Canonical bases and the conjugation representation of a semisimple Lie group, Pacific J. Math. 206 (2002), 25–37.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172.

    MathSciNet  Google Scholar 

  3. S. Donkin, A filtration for rational modules, Math. Z. 177 (1981), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Donkin, Rational Representations of Algebraic Groups, LNM 1140, Springer, Berlin 1985.

    MATH  Google Scholar 

  5. W.A. de Graaf, Constructing canonical bases of quantized enveloping algebras, Exper. Math. 11 (2002), 161–170.

    MATH  Google Scholar 

  6. A. Joseph, On the Demazure character formula, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 389–419.

    MATH  Google Scholar 

  7. A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 29, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  8. A. Joseph, On a Harish-Chandra homomorphism, C. R. Acad. Sci. Paris Sér. I Math. no. 7 324 (1997), 759–764.

    MATH  Google Scholar 

  9. A. Joseph, A decomposition theorem for Demazure crystals, J. Algebra, 265 (2003), 562–578.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Joseph, Lie algebras, their representations and crystals, Lecture Notes, Weizmann 2004, available from www.wisdom.weizmann.ac.il/~gorelik/agrt.htm.

    Google Scholar 

  11. M. Kaneda, Based modules and good filtrations in algebraic groups, Hiroshima Math. J., 28 (1998), 337–344.

    MATH  MathSciNet  Google Scholar 

  12. M. Kashiwara, On crystal bases of the q-analogue of the enveloping algebra, Duke Math. J. no. 2, 63 (1991), 465–516.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Kashiwara, The crystal basis and Littelmann’s modified Demazure formula, Duke Math. J. 71, no. 3 (1993), 839–858.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J., 69 (1993), 455–485.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Kumar, Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture, Invent. Math., no. 1 93 (1988), 117–130.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Kumar, A refinement of the PRV conjecture, Invent. Math. no. 2, 97 (1989), 305–311.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Lakshmibai, P. Littelmann and P. Magyar, Standard monomial theory for Bott-Samelson varieties, Compos. Math. 130 (2002), 293–318.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Littelmann, A Richardson-Littlewood formula for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329–346.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Littelmann, Path and root operators in representation theory, Ann. Math. 142 (1995), 499–525.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Littelmann, The path model, the quantum Frobenius map and standard monomial theory, Algebraic Groups and Their Representations (Cambridge, 1997), 175–212, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 517, Kluwer Acad. Publ., Dordrecht, 1998.

    Google Scholar 

  21. P. Littelmann, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc. 11 (1998), 551–567.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Littelmann, Cones, crystals and patterns, Trans. Groups 3 (1998), 145–179.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J.A.M.S. 3 (1990), 447–498.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Lusztig, Introduction to Quantum Groups, Prog. Math., 110, Birkhäuser Boston, 1993.

    Google Scholar 

  25. G. Lusztig, Tight monomials in quantized enveloping algebras, in Quantum deformations of algebras and their representations, Israel Mathematical Conference Proceedings, 7 (1993), 117–132.

    MathSciNet  Google Scholar 

  26. O. Mathieu, Filtrations of B-modules, Duke Math. J., no. 2, 59 (1989), 421–442.

    Article  MATH  MathSciNet  Google Scholar 

  27. O. Mathieu, Construction d’un groupe de Kac-Moody et applications, Compos. Math., no. 1, 69 (1989), 37–60.

    MATH  MathSciNet  Google Scholar 

  28. O. Mathieu, Filtrations of G-modules, Ann. Sci. École Norm. Sup. (4), 23 (1990), 625–644.

    MATH  MathSciNet  Google Scholar 

  29. O. Mathieu, Positivity of some intersections in K 0(G/B). Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome), (1998), J. Pure Appl. Algebra, no. 1–3 152 (2000), 231–243.

    Article  MATH  MathSciNet  Google Scholar 

  30. O. Mathieu, Frobenius actions on the B-cohomology, Adv. Ser. Math. Phys., Vol. 7, 1989, World Scientific, Singapore, 39–51.

    Google Scholar 

  31. J. Paradowski, Filtrations of modules over quantum algebras, Proc. Symp. Pure Math. 56 (1994), 93–108.

    MathSciNet  Google Scholar 

  32. P. Polo, Variétés de Schubert et excellentes filtrations. Orbites unipotentes et représentations, III,. Astérisque No. 173–174 (1989), 10–11, 281–311.

    MathSciNet  Google Scholar 

  33. S. Ryom-Hansen, A q-analogue of Kempf’s vanishing theorem, Moscow Math. J. 3 (2003), 173–187.

    MATH  MathSciNet  Google Scholar 

  34. W. van der Kallen, Longest weight vectors and excellent filtrations, Math. Z., no. 1, 201 (1989), 19–31.

    Article  MATH  MathSciNet  Google Scholar 

  35. W. van der Kallen, Lectures on Frobenius splittings and B modules, Tata Institute Lecture Notes, Springer, Berlin, 1993.

    Google Scholar 

  36. J.-P. Wang, Sheaf cohomology on G/B and tensor products of Weyl modules, J. Alg. 77 (1982), 162–185.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Joseph, A. (2006). Modules with a Demazure flag. In: Bernstein, J., Hinich, V., Melnikov, A. (eds) Studies in Lie Theory. Progress in Mathematics, vol 243. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4478-4_8

Download citation

Publish with us

Policies and ethics