Skip to main content

Part of the book series: Systems and Control: Foundations & Applications ((SCFA))

  • 2639 Accesses

Summary

Robustness had become a central issue in system and control theory, focusing the researchers’ attention from the study of a single model to the investigation of a set of models, described by a set of perturbations of a “nominal” model. This set, often indicated as the uncertainty model set, has to be suitably constructed to describe the inherent uncertainty about the system under consideration and to be used for analysis and design purposes. H identification methods deliver uncertainty model sets in a form suitable to be used by well-established robust design techniques, based on H or μ optimization methods. The literature on H identification is now very extensive. Some of the most relevant contributions related to assumption validation, evaluation of bounds on unmodeled dynamics, convergence analysis, and optimality properties of different algorithms are here surveyed from a deterministic point of view.

This research was supported in part by funds of Ministero dell’niversità e della Ricerca Scientifica e Tecnologica under the Project “Robustness and optimization techniques for control of uncertain systems”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akçay H, Hjalmarsson H (1994) The least-squares identification of FIR systems subject to worst-case noise. Systems Control Lett., 23:329–338

    Article  MATH  MathSciNet  Google Scholar 

  2. Akçay H, Ninness B (1998) On the worst-case divergence of the least-squares algorithm. Systems Control Lett., 33:19–24

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersson L, Rantzer A, Beck C (1999) Model comparison and simplification. International Journal of Robust and Nonlinear Control, 9:157–181

    Article  MATH  MathSciNet  Google Scholar 

  4. Ball JA, Gohberg I, Rodman L (1990) Interpolation of rational matrix functions. Birkhäuser, Cambridge, MA

    MATH  Google Scholar 

  5. Chen J (1997) Frequency-domain tests for validation of linear fractional uncertain models. IEEE Trans. Automat. Control, AC-42(6):748–760

    Article  Google Scholar 

  6. Chen J, Gu G (2000) Control-oriented system identification: an H approach. John Wiley & Sons, Inc., New York

    Google Scholar 

  7. Chen J, Nett CN (1995) The Carathéodory-Fejér problem and H /ℓ1 identification: a time domain approach. IEEE Trans. Automat. Control, AC-40(4):729–735

    Article  MathSciNet  Google Scholar 

  8. Chen J, Nett CN, Fan MKH (1992) Worst-case system identification in H : validation of a priori information, essentially optimal algorithms, and error bounds, 251–257. In: Proc. of the American Control Conference, Chicago, IL

    Google Scholar 

  9. Chen J, Nett CN, Fan MKH (1995) Worst case system identification in H : validation of a priori information, essentially optimal algorithms, and error bounds. IEEE Trans. Automat. Control, AC-40(7):1260–1265

    Article  MathSciNet  Google Scholar 

  10. Garulli A, Tesi A, Vicino A (eds), (1999) Robustness in identification and control, vol. 245 of Lecture Notes in Control and Inform. Sci. Springer-Verlag, Godalming, UK

    MATH  Google Scholar 

  11. Giarré L, Milanese M, Taragna M (1997) H identification and model quality evaluation. IEEE Trans. Automat. Control, AC-42(2):188–199

    Article  Google Scholar 

  12. Glaum M, Lin L, Zames G (1996) Optimal H approximation by systems of prescribed order using frequency response data, 2318–2321. In: Proc. of the 35th IEEE Conf. on Decision and Control, Kobe, Japan

    Google Scholar 

  13. Gu G, Chu CC, Kim G (1994) Linear algorithms for worst case identification in h with applications to flexible structures, 112–116. In: Proc. of the American Control Conference, Baltimore, MD

    Google Scholar 

  14. Gu G, Khargonekar PP (1992a) A class of algorithms for identification in H . Automatica, 28(2):299–312

    Article  MATH  MathSciNet  Google Scholar 

  15. Gu G, Khargonekar PP (1992b) Linear and nonlinear algorithms for identification in H with error bounds. IEEE Trans. Automat. Control, AC-37(7):953–963

    Article  MathSciNet  Google Scholar 

  16. Gu G, Xiong D, Zhou K (1993) Identification in H using Pick’s interpolation. Systems Control Lett., 20:263–272

    Article  MATH  MathSciNet  Google Scholar 

  17. Hakvoort RG, van den Hof PMJ (1995) Consistent parameter bounding identification for linearly parametrized model sets. Automatica, 31(7):957–969

    Article  MATH  MathSciNet  Google Scholar 

  18. Helmicki AJ, Jacobson CA, Nett CN (1991) Control oriented system identification: a worst-case/deterministic approach in H . IEEE Trans. Automat. Control, AC-36(10):1163–1176

    Article  MathSciNet  Google Scholar 

  19. Helmicki AJ, Jacobson CA, Nett CN (1993) Least squares methods for H control-oriented system identification. IEEE Trans. Automat. Control, AC-38(5):819–826

    Article  MathSciNet  Google Scholar 

  20. Kon MA, Tempo R (1989) On linearity of spline algorithms. Journal of Complexity, 5(2):251–259

    Article  MATH  MathSciNet  Google Scholar 

  21. Ljung L, Guo L (1997) The role of model validation for assessing the size of the unmodeled dynamics. IEEE Trans. Automat. Control, AC-42(9):1230–1239

    Article  MathSciNet  Google Scholar 

  22. Ljung L, Yuan ZD (1985) Asymptotic properties of black-box identification of transfer functions. IEEE Trans. Automat. Control, AC-30(6):514–530

    Article  MathSciNet  Google Scholar 

  23. Mäkilä PM, Partington JR, Gustafsson TK (1995) Worst-case control-relevant identification. Automatica, 31(12):1799–1819

    Article  MATH  MathSciNet  Google Scholar 

  24. Marchuk AG, Oshipenko KY (1975) Best approximation of functions specified with an error at a finite number of points. Mat. Zametki, 17:359–368 (in Russian; English Transl., Math. Notes, vol. 17, 207–212, 1975)

    MATH  MathSciNet  Google Scholar 

  25. Milanese M, Norton J, Piet-Lahanier H, Walter É (eds) (1996) Bounding approaches to system identification. Plenum Press, New York

    MATH  Google Scholar 

  26. Milanese M, Novara C, Taragna M (2001) “Fast” set membership H identification from frequency-domain data, 1698–1703. In: Proc. of European Control Conf. 2001, Porto, Portugal

    Google Scholar 

  27. Milanese M, Taragna M (2000) Set membership identification for H robust control design. In: Proc. of 12th IFAC Symposium on System Identification SYSID 2000, Santa Barbara, CA

    Google Scholar 

  28. Milanese M, Taragna M (2001) Nearly optimal model sets in H identification, 1704–1709. In: Proc. of the European Control Conf. 2001, Porto, Portugal

    Google Scholar 

  29. Milanese M, Taragna M (2002) Optimality, approximation, and complexity in set membership H identification. IEEE Trans. Automat. Control, AC-47(10):1682–1690

    Article  MathSciNet  Google Scholar 

  30. Milanese M, Tempo R (1985) Optimal algorithms theory for estimation and prediction. IEEE Trans. Automat. Control, AC-30(8):730–738

    Article  MathSciNet  Google Scholar 

  31. Milanese M, Vicino A (1991) Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica, 27(6):997–1009

    Article  MATH  MathSciNet  Google Scholar 

  32. Nehari Z (1957) On bounded bilinear forms. Ann. Math., 65:153–162

    Article  MATH  MathSciNet  Google Scholar 

  33. Ninness B, Goodwin GC (1995) Estimation of model quality. Automatica, 31(12):1771–1797

    Article  MATH  MathSciNet  Google Scholar 

  34. Paganini F (1996) A set-based approach for white noise modeling. IEEE Trans. Automat. Control, AC-41(10):1453–1465

    Article  MathSciNet  Google Scholar 

  35. Parker PJ, Bitmead RR (1987) Adaptive frequency response identification, 348–353. In: Proc. of the 26th IEEE Conf. on Decision and Control, Los Angeles, CA

    Google Scholar 

  36. Partington JR (1992) Robust identification in H . J. Math. Anal. Appl., 166:428–441

    Article  MATH  MathSciNet  Google Scholar 

  37. Partington JR (1997) Interpolation, Identification, and Sampling, vol. 17 of London Math. Soc. Monographs New Series. Clarendon Press-Oxford, New York

    MATH  Google Scholar 

  38. Partington JR, Mäkilä PM (1995) Worst-case analysis of the least-squares method and related identification methods. Systems Control Lett., 24:193–200

    Article  MATH  MathSciNet  Google Scholar 

  39. Poolla K, Khargonekar P, Tikku A, Krause J, Nagpal K (1994) A time-domain approach to model validation. IEEE Trans. Automat. Control, AC-39(5):951–959

    Article  MathSciNet  Google Scholar 

  40. Rosenblum M, Rovnyak J (1985) Hardy classes and operator theory. Oxford Univ. Press, New York

    MATH  Google Scholar 

  41. Smith RS, Dahleh M (eds) (1994) The modeling of uncertainty in control systems, vol. 192 of Lecture Notes in Control and Inform. Sci. Springer-Verlag, London

    MATH  Google Scholar 

  42. Smith RS, Doyle JC (1992) Model validation: a connection between robust control and identification. IEEE Trans. Automat. Control, AC-37(7):942–952

    Article  MathSciNet  Google Scholar 

  43. Traub JF, Wasilkowski GW, Woźniakowski H (1988) Information-based complexity. Academic Press, New York

    MATH  Google Scholar 

  44. Venkatesh SR, Dahleh MA (1997) Identification in the presence of classes of unmodeled dynamics and noise. IEEE Trans. Automat. Control, AC-42(12):1620–1635

    Article  MathSciNet  Google Scholar 

  45. Vidyasagar M (1996) A theory of learning and generalization with application to neural networks and control systems. Springer-Verlag, New York

    Google Scholar 

  46. Zhou T (2001) On the consistency between an LFT described model set and frequency domain data. IEEE Trans. Automat. Control, AC-46(12):2001–2007

    Article  Google Scholar 

  47. Zhou T, Kimura H (1993) Time domain identification for robust control. Systems Control Lett., 20(3):167–178

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhou T, Wang L, Sun Z (2002) Closed-loop model set validation under a stochastic framework. Automatica, 38(9):1449–1461

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Milanese, M., Taragna, M. (2006). Set Membership Identification: The H Case. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds) Current Trends in Nonlinear Systems and Control. Systems and Control: Foundations & Applications. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4470-9_3

Download citation

Publish with us

Policies and ethics