Skip to main content

Coordination of Robot Teams: A Decentralized Approach

  • Chapter
Book cover Current Trends in Nonlinear Systems and Control

Part of the book series: Systems and Control: Foundations & Applications ((SCFA))

  • 2666 Accesses

Summary

In this chapter, we present two main contributions: (1) a leader-follower formation controller based on dynamic feedback linearization, and (2) a framework for coordinating teams of mobile robots (i.e., swarms). We derive coordination algorithms that allow robot swarms having independent goals but sharing a common environment to reach their target destinations. Derived from simple potential fields and the hierarchical composition of potential fields, our framework leads to a decentralized approach to coordinate complex group interactions. Because the framework is decentralized, it can potentially scale to teams of tens and hundreds of robots. Simulation results verify the scalability and feasibility of the proposed coordination scheme.

The work of the first author is partially supported by NSF grants #0311460 and #0348637 (CAREER), and by the U.S. Army Research Office under grant DAAD19-03-1-0142 (through the University of Oklahoma).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baras JS, Tan X, Hovareshti P (2003) Decentralized control of autonomous vehicles 1532–1537. In: Proc. IEEE Conf. on Decision and Control, Maui, HI

    Google Scholar 

  2. Barraquand J, Latombe J (1993) Non-holonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10:121–155

    Article  MATH  MathSciNet  Google Scholar 

  3. Belta C, Kumar V (2004) Abstraction and control for groups of robots. IEEE Trans. on Robotics and Automation 20(5):865–875

    Google Scholar 

  4. Bemporad A, De Luca A, Oriolo G (1996) Local incremental planning for a car-like robot navigating among obstacles 1205–1211, In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN

    Google Scholar 

  5. Butenko S, Murphey R, Pardalos P (eds) (2003) Cooperative control: models, applications and algorithms, vol. 1 of Applied optimization. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  6. Chaimowicz L, Kumar V, Campos M (2004) A paradigm for dynamic coordination of multiple robots. Autonomous Robots 17(1):7–21

    Article  Google Scholar 

  7. Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision-based formation control framework. IEEE Trans. on Robotics and Automation 18(5):813–825

    Article  Google Scholar 

  8. De Luca A, Oriolo G, Samson C (1998) Feedback control of a nonholonomic car-like robot In: Laumond J.-P (ed), Robot motion planning and control, 171–253. Springer-Verlag, London

    Chapter  Google Scholar 

  9. Fierro R, Clark J, Hougen D, Commuri S (2005) A multi-robot testbed for bilogically inspired cooperative control In: Schultz A, Parker L, Schneider F (eds), Multi-robot systems: from swarms to intelligent automata, Naval Research Laboratory, Washington, DC

    Google Scholar 

  10. Fierro R, Lewis FL (1997) Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robotic Systems 14(3):149–163

    Article  MATH  Google Scholar 

  11. Fierro R, Song P, Das AK, Kumar V (2002) Cooperative control of robot formations In: Murphey R, Pardalos P (eds), Cooperative control and optimization, vol. 66 of Applied optimization, chapter 5, 73–93. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  12. Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Research 23(9):939–954

    Article  Google Scholar 

  13. Ghosh R, Tomlin C (2000) Maneuver design for multiple aircraft conflict resolution 672–676. In: Proc. American Control Conference, Chicago, IL

    Google Scholar 

  14. Isidori A (1995) Nonlinear control systems, Springer-Verlag, London

    MATH  Google Scholar 

  15. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5:90–98

    Google Scholar 

  16. Koditschek D (1987) Exact robot navigation by means of potential functions: some topological considerations 1–6. In: Proc. IEEE Int. Conf. Robot. Automat.

    Google Scholar 

  17. Kumar V, Leonard N, Morse A (eds) (2004) A post-workshop volume, 2003 Block Island Workshop on Cooperative Control Series, vol. 309 of LNCIS. Springer-Verlag, London

    Google Scholar 

  18. LaValle S, Hutchinson S (1998) Optimal motion planning for multiple robots having independent goals. IEEE Trans. on Robotics and Automation 14(6):912–925

    Article  Google Scholar 

  19. Leonard NE, Fiorelli E (2001) Virtual leaders, artificial potentials and coordinated control of groups 2968–2973. In: Proc. IEEE Conf. on Decision and Control, Orlando, FL

    Google Scholar 

  20. Ögren P, Fiorelli E, Leonard N (2004) Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. on Automatic Control 49(8):1292–1302

    Article  Google Scholar 

  21. Okubo A (1985) Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Advances in Biophysics 22:1–94

    Article  MathSciNet  Google Scholar 

  22. Oriolo G, De Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization. IEEE Trans. on Robotics and Automation 10(6):835–852

    Google Scholar 

  23. Song P, Kraus P, Kumar V, Dupont P (2001) Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. ASME Journal of Applied Mechanics 68:118–128

    Article  MATH  Google Scholar 

  24. Song P, Kumar V (2002) A potential field based approach to multi-robot manipulation 1217–1222. In: Proc. IEEE Int. Conf. Robot. Automat., Washington, DC

    Google Scholar 

  25. Spletzer J, Das A, Fierro R, Taylor CJ, Kumar V, Ostrowski JP (2001) Cooperative localization and control for multi-robot manipulation 631–636. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Maui, HI

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Fierro, R., Song, P. (2006). Coordination of Robot Teams: A Decentralized Approach. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds) Current Trends in Nonlinear Systems and Control. Systems and Control: Foundations & Applications. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4470-9_19

Download citation

Publish with us

Policies and ethics